Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3152434.3152441acmconferencesArticle/Chapter ViewAbstractPublication PagescommConference Proceedingsconference-collections
research-article

Learning to Route

Published: 30 November 2017 Publication History

Abstract

Recently, much attention has been devoted to the question of whether/when traditional network protocol design, which relies on the application of algorithmic insights by human experts, can be replaced by a data-driven (i.e., machine learning) approach. We explore this question in the context of the arguably most fundamental networking task: routing. Can ideas and techniques from machine learning (ML) be leveraged to automatically generate "good" routing configurations? We focus on the classical setting of intradomain traffic engineering. We observe that this context poses significant challenges for data-driven protocol design. Our preliminary results regarding the power of data-driven routing suggest that applying ML (specifically, deep reinforcement learning) to this context yields high performance and is a promising direction for further research. We outline a research agenda for ML-guided routing.

Supplementary Material

MP4 File (valadarsky.mp4)

References

[1]
DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. https://goo.gl/QTdU2T.
[2]
IBM ILOG CPLEX Optimizer. http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/index.html.
[3]
M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic flow scheduling for data center networks. In NSDI, 2010.
[4]
M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B. Prabhakar, S. Sengupta, and M. Sridharan. Data Center TCP (DCTCP). ACM SIGCOMM, 2010.
[5]
M. Allalouf and Y. Shavitt. Maximum flow routing with weighted max-min fairness. In Quality of Service in the Emerging Networking Panorama.
[6]
D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient overlay networks. 2001.
[7]
Y. Azar, E. Cohen, A. Fiat, H. Kaplan, and H. Racke. Optimal oblivious routing in polynomial time. STOC, 2003.
[8]
D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly learning to align and translate. arXiv, 2014.
[9]
C. M. Bishop. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, 2006.
[10]
M. Chiesa, G. Rétvári, and M. Schapira. Lying your way to better traffic engineering. CoNEXT, 2016.
[11]
T. W. S. Chow and C. T. Leung. Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proceedings - Generation, Transmission and Distribution, 1996.
[12]
M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and M. Schapira. PCC: Re-architecting congestion control for consistent high performance. NSDI, 2015.
[13]
Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel. Benchmarking deep reinforcement learning for continuous control. ICML, 2016.
[14]
P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of publish/subscribe. ACM Comput. Surv., 2003.
[15]
B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional ip routing protocols. Comm. Mag., 2002.
[16]
B. Fortz and M. Thorup. Increasing internet capacity using local search. Computational Optimization and Applications, 2004.
[17]
B. Fortz and M. Thorup. Optimizing ospf/is-is weights in a changing world. IEEE J.Sel. A. Commun., 2006.
[18]
M. Ghodbadi, R. Mahajan, A. Phanishayee, H. Rastegarfar, P.-A. Blanche, M. Glick, D. Kilper, J. Kulkarni, G. Ranade, and N. Devanur. ProjecToR: Agile Reconfigurable Datacenter Interconnect. SIGCOMM, 2016.
[19]
D. Halperin, S. Kandula, J. Padhye, P. Bahl, and D. Wetherall. Augmenting data center networks with multi-gigabit wireless links. SIGCOMM, 2011.
[20]
N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P. Longtin, H. Shah, and A. Tanwer. Firefly: A reconfigurable wireless data center fabric using free-space optics. SIGCOMM, 2014.
[21]
K. Janocha and W. M. Czarnecki. On loss functions for deep neural networks in classification. CoRR, 2017.
[22]
W. S. Jewell. Multi-commodity Network Solutions. 1966.
[23]
J. Jiang, V. Sekar, I. Stoica, and H. Zhang. Unleashing the potential of data-driven networking. COMSNETS, 2017.
[24]
S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope: Responsive yet stable traffic engineering. 2005.
[25]
S. Kassing, A. Valadarsky, G. Shahaf, M. Schapira, and A. Singla. Augmenting data center networks with multi-gigabit wireless links. SIGCOMM, 2011.
[26]
S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The internet topology zoo. IEEE Journal on Selected Areas in Communications, 2011.
[27]
J. Kober, J. A. Bagnell, and J. Peters. Reinforcement learning in robotics: A survey. The International Journal of Robotics Research, 2013.
[28]
A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012.
[29]
P. Kumar, Y. Yuan, C. Yu, N. Foster, R. D. Kleinberg, and R. Soulé. Kulfi: Robust traffic engineering using semi-oblivious routing. CoRR, 2016.
[30]
Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 1998.
[31]
M. Majer, C. Bobda, A. Ahmadinia, and J. Teich. Packet routing in dynamically changing networks on chip. In Proceedings of the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS'05) - Workshop 3 - Volume 04, IPDPS '05, pages 154.2--, Washington, DC, USA, 2005. IEEE Computer Society.
[32]
H. Mao, M. Alizadeh, I. Menache, and S. Kandula. Resource management with deep reinforcement learning. HotNets, 2016.
[33]
H. Mao, R. Netravali, and M. Alizadeh. Neural adaptive bitrate streaming with pensive. SIGCOMM, 2017.
[34]
A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix estimation: Existing techniques and new directions. 2002.
[35]
N. Michael and A. Tang. Halo: Hop-by-hop adaptive link-state optimal routing. IEEE/ACM Transactions on Networking, 2015.
[36]
V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. ICML, 2016.
[37]
V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. A. Riedmiller. Playing atari with deep reinforcement learning. CoRR, 2013.
[38]
V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep reinforcement learning. Nature, 2015.
[39]
M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of Machine Learning. The MIT Press, 2012.
[40]
M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, and Y. Zhang. Experience in measuring backbone traffic variability: Models, metrics, measurements and meaning. IMW, 2002.
[41]
J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy optimization. ICML, 2015.
[42]
J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal Policy Optimization Algorithms. ArXiv e-prints, 2017.
[43]
F. Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. ACM, 1990.
[44]
D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel, and D. Hassabis. Mastering the game of Go with deep neural networks and tree search. Nature, 2016.
[45]
R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press Cambridge, 1998.
[46]
H. Wang and B. Li. Lube: Mitigating bottlenecks in wide area data analytics. HotCloud, 2017.
[47]
C. J. Watkins and P. Dayan. Q-learning. Machine Learning, 1992.
[48]
K. Winstein and H. Balakrishnan. Tcp ex machina: Computer-generated congestion control. SIGCOMM, 2013.
[49]
Y. Wu, E. Mansimov, S. Liao, R. B. Grosse, and J. Ba. Scalable trust-region method for deep reinforcement learning using kronecker-factored approximation. ArXiv e-prints, 2017.
[50]
D. Xu, M. Chiang, and J. Rexford. Link-state routing with hop-by-hop forwarding can achieve optimal traffic engineering. INFOCOM, 2008.
[51]
X. Zhou, Z. Zhang, Y. Zhu, Y. Li, S. Kumar, A. Vahdat, B. Y. Zhao, and H. Zheng. Mirror mirror on the ceiling: Flexible wireless links for data centers. SIGCOMM, 2012.

Cited By

View all
  • (2024)FIGRET: Fine-Grained Robustness-Enhanced Traffic EngineeringProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672258(117-135)Online publication date: 4-Aug-2024
  • (2024)Transferable Neural WAN TE for Changing TopologiesProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672237(86-102)Online publication date: 4-Aug-2024
  • (2024)Autonomous Flow Routing for Near Real-Time Quality of Service AssuranceIEEE Transactions on Network and Service Management10.1109/TNSM.2023.333920121:2(2504-2514)Online publication date: Apr-2024
  • Show More Cited By

Index Terms

  1. Learning to Route
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      HotNets '17: Proceedings of the 16th ACM Workshop on Hot Topics in Networks
      November 2017
      206 pages
      ISBN:9781450355698
      DOI:10.1145/3152434
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 30 November 2017

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Funding Sources

      Conference

      HotNets-XVI
      Sponsor:
      HotNets-XVI: The 16th ACM Workshop on Hot Topics in Networks
      November 30 - December 1, 2017
      CA, Palo Alto, USA

      Acceptance Rates

      HotNets '17 Paper Acceptance Rate 28 of 124 submissions, 23%;
      Overall Acceptance Rate 110 of 460 submissions, 24%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)144
      • Downloads (Last 6 weeks)18
      Reflects downloads up to 04 Oct 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)FIGRET: Fine-Grained Robustness-Enhanced Traffic EngineeringProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672258(117-135)Online publication date: 4-Aug-2024
      • (2024)Transferable Neural WAN TE for Changing TopologiesProceedings of the ACM SIGCOMM 2024 Conference10.1145/3651890.3672237(86-102)Online publication date: 4-Aug-2024
      • (2024)Autonomous Flow Routing for Near Real-Time Quality of Service AssuranceIEEE Transactions on Network and Service Management10.1109/TNSM.2023.333920121:2(2504-2514)Online publication date: Apr-2024
      • (2024)DeepLS: Local Search for Network Optimization Based on Lightweight Deep Reinforcement LearningIEEE Transactions on Network and Service Management10.1109/TNSM.2023.328743321:1(108-119)Online publication date: Feb-2024
      • (2024)LiteFlow: Toward High-Performance Adaptive Neural Networks for Kernel DatapathIEEE/ACM Transactions on Networking10.1109/TNET.2023.329315232:1(627-642)Online publication date: Feb-2024
      • (2024)Routing Optimization With Deep Reinforcement Learning in Knowledge Defined NetworkingIEEE Transactions on Mobile Computing10.1109/TMC.2023.323544623:2(1444-1455)Online publication date: Feb-2024
      • (2024)Deep Reinforcement Learning Based Dynamic Flowlet Switching for DCNIEEE Transactions on Cloud Computing10.1109/TCC.2024.338213212:2(580-593)Online publication date: Apr-2024
      • (2024)gPerfIsol: GNN-Based Rate-Limits Allocation for Performance Isolation in Multi-Tenant Cloud2024 27th Conference on Innovation in Clouds, Internet and Networks (ICIN)10.1109/ICIN60470.2024.10494419(194-201)Online publication date: 11-Mar-2024
      • (2024)An ML-Accelerated Framework for Large-Scale Constrained Traffic Engineering2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS)10.1109/ICDCS60910.2024.00014(47-58)Online publication date: 23-Jul-2024
      • (2024)A Deep Reinforcement Learning Approach for Adaptive Traffic Routing in Next-Gen NetworksICC 2024 - IEEE International Conference on Communications10.1109/ICC51166.2024.10622726(465-471)Online publication date: 9-Jun-2024
      • Show More Cited By

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media