Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Second-Order Occlusion-Aware Volumetric Radiance Caching

Published: 02 July 2018 Publication History

Abstract

We present a second-order gradient analysis of light transport in participating media and use this to develop an improved radiance caching algorithm for volumetric light transport. We adaptively sample and interpolate radiance from sparse points in the medium using a second-order Hessian-based error metric to determine when interpolation is appropriate. We derive our metric from each point’s incoming light field, computed by using a proxy triangulation-based representation of the radiance reflected by the surrounding medium and geometry. We use this representation to efficiently compute the first- and second-order derivatives of the radiance at the cache points while accounting for occlusion changes. We also propose a self-contained 2D model for light transport in media and use it to validate and analyze our approach, demonstrating that our method outperforms previous radiance caching algorithms both in terms of accurate derivative estimates and final radiance extrapolation. We generalize these findings to practical 3D scenarios, where we show improved results while reducing computation time by up to 30% compared to previous work.

Supplementary Material

a20-marco-supp.pdf (marco.zip)
Supplemental movie and image files for, Second-Order Occlusion-Aware Volumetric Radiance Caching
MP4 File (tog37-2-a20-marco.mp4)

References

[1]
Andrew Allen and Nikunj Raghuvanshi. 2015. Aerophones in Flatland: Interactive wave simulation of wind instruments. ACM Transactions on Graphics 34, 4, Article 134, 11 pages.
[2]
James Arvo. 1994. The irradiance Jacobian for partially occluded polyhedral sources. In Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’94). ACM, New York, NY, 343--350.
[3]
Laurent Belcour, Kavita Bala, and Cyril Soler. 2014. A local frequency analysis of light scattering and absorption. ACM Transactions on Graphics 33, 5, Article 163, 17 pages.
[4]
Benedikt Bitterli. 2016a. Rendering Resources. Retrieved February 14, 2018, from https://benedikt-bitterli.me/resources/.
[5]
Benedikt Bitterli. 2016b. Virtual Femto Photography. Retrieved February 14, 2018, from https://benedikt-bitterli.me/femto.html.
[6]
Subrahmanyan Chandrasekhar. 1960. Radiative Transfer. Dover.
[7]
Frédo Durand, Nicolas Holzschuch, Cyril Soler, Eric Chan, and François X Sillion. 2005. A frequency analysis of light transport. ACM Transactions on Graphics 24, 3, 1115--1126.
[8]
Oskar Elek, Pablo Bauszat, Tobias Ritschel, Marcus Magnor, and Hans-Peter Seidel. 2014. Spectral ray differentials. Computer Graphics Forum 33, 4, 113--122. http://people.mpi-inf.mpg.de/ oelek/Papers/SpectralDifferentials/.
[9]
Diego Gutierrez, Srinivasa G. Narasimhan, Henrik Wann Jensen, and Wojciech Jarosz. 2008. Scattering. In Proceedings of the ACM SIGGRAPH Asia 2008 Courses.
[10]
Toshiya Hachisuka, Wojciech Jarosz, Iliyan Georgiev, Anton Kaplanyan, and Derek Nowrouzezahrai. 2013. State of the art in photon density estimation. In Proceedings of the ACM SIGGRAPH Asia Courses.
[11]
Toshiya Hachisuka, Wojciech Jarosz, and Henrik Wann Jensen. 2010. A progressive error estimation framework for photon density estimation. ACM Transactions on Graphics 29, 6, Article 144, 12 pages.
[12]
Paul S. Heckbert. 1992. Radiosity in Flatland. Computer Graphics Forum 2, 181--192.
[13]
Robert Herzog, Karol Myszkowski, and Hans-Peter Seidel. 2009. Anisotropic radiance-cache splatting for efficiently computing high-quality global illumination with lightcuts. Computer Graphics Forum 28, 2, 259--268.
[14]
Nicolas Holzschuch and Francois Sillion. 1998. An exhaustive error-bounding algorithm for hierarchical radiosity. Computer Graphics Forum 17, 197--218.
[15]
Nicolas Holzschuch and François X. Sillion. 1995. Accurate computation of the radiosity gradient with constant and linear emitters. In Proceedings of the 1995 Eurographics Symposium on Rendering. 186--195. https://hal.inria.fr/inria-00379406
[16]
Homan Igehy. 1999. Tracing ray differentials. In Proceedings of the 26th Annual Conference on Computer Graphics andInteractive Techniques. 179--186.
[17]
Adrian Jarabo, Julio Marco, Adolfo Muñoz, Raul Buisan, Wojciech Jarosz, and Diego Gutierrez. 2014. A framework for transient rendering. ACM Transactions on Graphics 33, 6, Article 177.
[18]
Wojciech Jarosz, Craig Donner, Matthias Zwicker, and Henrik Wann Jensen. 2008. Radiance caching for participating media. ACM Transactions on Graphics 27, 1, 7:1--7:11.
[19]
Wojciech Jarosz, Derek Nowrouzezahrai, Iman Sadeghi, and Henrik Wann Jensen. 2011a. A comprehensive theory of volumetric radiance estimation using photon points and beams. ACM Transactions on Graphics 30, 1, 5:1--5:19.
[20]
Wojciech Jarosz, Derek Nowrouzezahrai, Robert Thomas, Peter-Pike Sloan, and Matthias Zwicker. 2011b. Progressive photon beams. ACM Transactions on Graphics 30, 6, Article 181.
[21]
Wojciech Jarosz, Volker Schönefeld, Leif Kobbelt, and Henrik Wann Jensen. 2012. Theory, analysis and applications of 2D global illumination. ACM Transactions on Graphics 31, 5, 125:1--125:21.
[22]
Wojciech Jarosz, Matthias Zwicker, and Henrik Wann Jensen. 2008. Irradiance gradients in the presence of participating media and occlusions. Computer Graphics Forum 27, 4, 1087--1096.
[23]
James T. Kajiya. 1986. The rendering equation. ACM SIGGRAPH Computer Graphics 20, 4, 143--150.
[24]
Anton S. Kaplanyan and Carsten Dachsbacher. 2013. Adaptive progressive photon mapping. ACM Transactions on Graphics 32, 2, 16:1--16:13.
[25]
Markus Kettunen, Marco Manzi, Miika Aittala, Jaakko Lehtinen, Frédo Durand, and Matthias Zwicker. 2015. Gradient-domain path tracing. ACM Trans.actions on Graphics 34, 4, Article 123.
[26]
Jaroslav Křivánek, Kadi Bouatouch, Sumanta N. Pattanaik, and Jiří Žára. 2006. Making radiance and irradiance caching practical: Adaptive caching and neighbor clamping. In Proceedings of the 2006 Eurographics Symposium on Rendering. 127--138.
[27]
Jaroslav Křivánek and Pascal Gautron. 2009. Practical Global Illumination With Irradiance Caching. Morgan & Claypool.
[28]
Jaroslav Křivánek, Pascal Gautron, Kadi Bouatouch, and Sumanta Pattanaik. 2005a. Improved radiance gradient computation. In Proceedings of the 21st Spring Conference on Computer Graphics (SCCG’05). ACM, New York, NY, 155--159.
[29]
Jaroslav Křivánek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. 2005b. Radiance caching for efficient global illumination computation. IEEE Transactions on Visualization and Computer Graphics 11, 5, 550--561.
[30]
Jaakko Lehtinen, Tero Karras, Samuli Laine, Miika Aittala, Frédo Durand, and Timo Aila. 2013. Gradient-domain metropolis light transport. ACM Transactions on Graphics 32, 4, Article 95.
[31]
Marco Manzi, Markus Kettunen, Miika Aittala, Jaakko Lehtinen, Fredo Durand, and Matthias Zwicker. 2015. Gradient-domain bidirectional path tracing. In Proceedings of the 2015 Eurographics Symposium on Rendering.
[32]
Marco Manzi, Fabrice Rousselle, Markus Kettunen, Jaakko Lehtinen, and Matthias Zwicker. 2014. Improved sampling for gradient-domain metropolis light transport. ACM Transactions on Graphics 33, 6, Article 178.
[33]
Soham Uday Mehta, Brandon Wang, Ravi Ramamoorthi, and Fredo Durand. 2013. Axis-aligned filtering for interactive physically-based diffuse indirect lighting. ACM Transactions on Graphics 32, 4, Article 95, 12 pages.
[34]
Adolfo Muñoz. 2014. Higher order ray marching. Computer Graphics Forum 33, 8, 167--176. 1467-8659
[35]
Rachel Orti, Stephane Riviere, Fredo Durand, and Claude Puech. 1996. Radiosity for dynamic scenes in Flatland with the visibility complex. Computer Graphics Forum. 15, 237--248.
[36]
Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A first-order analysis of lighting, shading, and shadows. ACM Transactions on Graphics 26, 1, Article 2.
[37]
Mickaël Ribardière, Samuel Carré, and Kadi Bouatouch. 2011. Adaptive records for volume irradiance caching. Visual Computer 27, 6, 655--664.
[38]
Fabrice Rousselle, Wojciech Jarosz, and Jan Novák. 2016. Image-space control variates for rendering. ACM Transactions on Graphics 35, 6, 169:1--169:12.
[39]
Lars Schjøth, Jeppe Revall Frisvad, Kenny Erleben, and Jon Sporring. 2007. Photon differentials. In Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (GRAPHITE’07). ACM, New York, NY, 179--186.
[40]
Jorge Schwarzhaupt, Henrik Wann Jensen, and Wojciech Jarosz. 2012. Practical Hessian-based error control for irradiance caching. ACM Transactions on Graphics 31, 6, Article 193.
[41]
Frank Suykens and Yves D. Willems. 2001. Path differentials and applications. In Proceedings of the 2001 Eurographics Workshop on Rendering. 257--268.
[42]
Adriaan Van Oosterom and Jan Strackee. 1983. The solid angle of a plane triangle. IEEE Transactions on Biomedical Engineering BME-30, 2, 125--126.
[43]
Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and Manfred Ernst. 2014. Embree: A kernel framework for efficient CPU ray tracing. ACM Transactions on Graphics 33, 4, 143.
[44]
Gregory J. Ward and Paul S. Heckbert. 1992. Irradiance gradients. InProceedings of the 1992 Eurographics Workshop on Rendering.85--98. http://radsite.lbl.gov/radiance/papers/erw92/paper.html
[45]
Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A ray tracing solution for diffuse interreflection. In Proceedings of the 15th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’88). ACM, New York, NY, 85--92.
[46]
Ling-Qi Yan, Miloš Hašan, Wenzel Jakob, Jason Lawrence, Steve Marschner, and Ravi Ramamoorthi. 2014. Rendering glints on high-resolution normal-mapped specular surfaces. ACM Transactions on Graphics 33, 4, Article 116.
[47]
Ling-Qi Yan, Miloš Hašan, Steve Marschner, and Ravi Ramamoorthi. 2016. Position-normal distributions for efficient rendering of specular microstructure. ACM Transactions on Graphics 35, 4, Article 56.
[48]
Matthias Zwicker, Wojciech Jarosz, Jaakko Lehtinen, Bochang Moon, Ravi Ramamoorthi, Fabrice Rousselle, Pradeep Sen, Cyril Soler, and Sung-Eui Yoon. 2015. Recent advances in adaptive sampling and reconstruction for Monte Carlo rendering. Computer Graphics Forum 34, 2, 667--681.

Cited By

View all
  • (2024)Optimizing Path Termination for Radiance Caching Through Explicit Variance TradingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753817:3(1-19)Online publication date: 9-Aug-2024
  • (2024)Unifying radiative transfer models in computer graphics and remote sensing, Part I: A surveyJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2023.108847314(108847)Online publication date: Feb-2024
  • (2024)Efficient participating media rendering with differentiable regularizationComputational Visual Media10.1007/s41095-023-0372-2Online publication date: 7-Oct-2024
  • Show More Cited By

Index Terms

  1. Second-Order Occlusion-Aware Volumetric Radiance Caching

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 37, Issue 2
    April 2018
    244 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/3191713
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 02 July 2018
    Accepted: 01 January 2018
    Revised: 01 December 2017
    Received: 01 November 2016
    Published in TOG Volume 37, Issue 2

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Global illumination
    2. irradiance caching
    3. participating media
    4. radiance derivatives
    5. rendering

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • DARPA (project REVEAL), and the Spanish Ministerio de Economía y Competitividad
    • European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (CHAMELEON project)
    • Gobierno de Aragón

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)22
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 10 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Optimizing Path Termination for Radiance Caching Through Explicit Variance TradingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753817:3(1-19)Online publication date: 9-Aug-2024
    • (2024)Unifying radiative transfer models in computer graphics and remote sensing, Part I: A surveyJournal of Quantitative Spectroscopy and Radiative Transfer10.1016/j.jqsrt.2023.108847314(108847)Online publication date: Feb-2024
    • (2024)Efficient participating media rendering with differentiable regularizationComputational Visual Media10.1007/s41095-023-0372-2Online publication date: 7-Oct-2024
    • (2024)Improving cache placement for efficient cache-based renderingThe Visual Computer10.1007/s00371-023-03231-zOnline publication date: 21-Jan-2024
    • (2023)Neural Path Sampling for Rendering Pure Specular Light TransportComputer Graphics Forum10.1111/cgf.1499743:1Online publication date: 19-Dec-2023
    • (2023)Real‐time Deep Radiance Reconstruction from Imperfect CachesComputer Graphics Forum10.1111/cgf.1467541:7(267-278)Online publication date: 20-Mar-2023
    • (2023)Neural Monte Carlo rendering of finite-time Lyapunov exponent fieldsVisual Intelligence10.1007/s44267-023-00014-x1:1Online publication date: 21-Jun-2023
    • (2022)Efficient Light Probes for Real-Time Global IlluminationACM Transactions on Graphics10.1145/3550454.355545241:6(1-14)Online publication date: 30-Nov-2022
    • (2022)Recursive analytic spherical harmonics gradient for spherical lightsComputer Graphics Forum10.1111/cgf.1448241:2(393-406)Online publication date: 24-May-2022
    • (2021)Real-time neural radiance caching for path tracingACM Transactions on Graphics10.1145/3476576.347657940:4(1-16)Online publication date: Aug-2021
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media