Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Practical Polytope Volume Approximation

Published: 16 June 2018 Publication History
  • Get Citation Alerts
  • Abstract

    We experimentally study the fundamental problem of computing the volume of a convex polytope given as an intersection of linear halfspaces. We implement and evaluate randomized polynomial-time algorithms for accurately approximating the polytope’s volume in high dimensions (e.g., few hundreds) based onhit-and-run random walks. To carry out this efficiently, we experimentally correlate the effect of parameters, such as random walk length and number of sample points, with accuracy and runtime. Our method is based on Monte Carlo algorithms with guaranteed speed and provably high probability of success for arbitrarily high precision. We exploit the problem’s features in implementing a practical rounding procedure of polytopes, in computing only partial “generations” of random points, and in designing fast polytope boundary oracles. Our publicly available software is significantly faster than exact computation and more accurate than existing approximation methods. For illustration, volume approximations of Birkhoff polytopes B11,…,B15 are computed, in dimensions up to 196, whereas exact methods have only computed volumes of up to B10.

    References

    [1]
    P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. 2005. Geometric approximation via coresets. In Combinatorial and Computational Geometry. MSRI, Berkeley, 1--30.
    [2]
    A. Andoni and P. Indyk. 2008. Near-optimal hashing algorithms for approximate nearest neighbor in high dimensions. Commun. ACM 51 (2008), 117--122.
    [3]
    S. Arya, G. D. da Fonseca, and D. M. Mount. 2012. Optimal area-sensitive bounds for polytope approximation. In Proc. Symp. on Computational Geometry. ACM, New York, 363--372.
    [4]
    D. Avis. 2000. lrs: A revised implementation of the reverse search vertex enumeration algorithm. In Polytopes: Combinatorics 8 Computation. Oberwolfach Seminars, Vol. 29. Birkhäuser, Basel, 177--198.
    [5]
    I. Bárány and Z. Füredi. 1987. Computing the volume is difficult. Discrete Comput. Geom. 2, 4 (1987), 319--326.
    [6]
    C. B. Barber, D. P. Dobkin, and H. Huhdanpaa. 1996. The quickhull algorithm for convex hulls. ACM Trans. of Math. Softw. 22, 4 (1996), 469--483.
    [7]
    R. Basri, T. Hassner, and L. Zelnik-Manor. 2011. Approximate nearest subspace search. IEEE Trans. Pattern Anal. Mach. Intell. 33, 2 (2011), 266--278.
    [8]
    M. Beck and D. Pixton. 2003. The Ehrhart polynomial of the Birkhoff polytope. Discrete Comput. Geom. 30, 4 (2003), 623--637.
    [9]
    D. Bertsimas and S. Vempala. 2004. Solving convex programs by random walks. J. ACM 51, 4 (2004), 540--556.
    [10]
    U. Betke and M. Henk. 1993. Approximating the volume of convex bodies. Discrete Comput. Geom. 10, 1 (1993), 15--21.
    [11]
    G. Brightwell and P. Winkler. 1991. Counting linear extensions. Order 8, 3 (1991), 225--242.
    [12]
    W. Bruns, B. Ichim, and C. Söger. 2013. Normaliz. Algorithms for rational cones and affine monoids. Retrieved from http://www.math.uos.de/normaliz.
    [13]
    B. Büeler and A. Enge. 2000. VINCI. Retrieved from http://www.math.u-bordeaux1.fr/ aenge/index.php?category=software8page=vinci.
    [14]
    B. Büeler, A. Enge, and K. Fukuda. 2000. Exact Volume Computation for Polytopes: A Practical Study. Mathematics and Statistics, Vol. 29. Birkhäuser, Basel, 131--154.
    [15]
    E. Canfield and B. McKay. 2009. The asymptotic volume of the Birkhoff polytope. Online J. Anal. Comb. 4 (2009).
    [16]
    CGAL 2015. CGAL: Computational Geometry Algorithms Library. Retrieved from http://www.cgal.org.
    [17]
    Y. Chen, P. Diaconis, S. P. Holmes, and J. S. Liu. 2005. Sequential Monte Carlo methods for statistical analysis of tables. J. Amer. Statist. Assoc. 100, 469 (March 2005), 109--120.
    [18]
    B. Cousins and S. Vempala. 2014. A cubic algorithm for computing gaussian volume. In Proc. Symp. on Discrete Algorithms. SIAM/ACM, 1215--1228.
    [19]
    B. Cousins and S. Vempala. 2015. Bypassing KLS: Gaussian cooling and an O*(n<sup>3</sup>) volume algorithm. In Proceedings of the 47th Annual ACM Symposium on Theory of Computing (STOC’15). ACM, New York, NY, 539--548.
    [20]
    B. Cousins and S. Vempala. 2016. A practical volume algorithm. Math. Program. Comput. 8, 2 (2016), 133--160.
    [21]
    M. Cryan and M. Dyer. 2003. A polynomial-time algorithm to approximately count contingency tables when the number of rows is constant. J. Comput. System Sci. 67, 2 (2003), 291--310.
    [22]
    J. A. De Loera, B. Dutra, M. Köppe, S. Moreinis, G. Pinto, and J. Wu. 2013. Software for exact integration of polynomials over polyhedra. Comput. Geom.: Theory Appl. 46, 3 (April 2013), 232--252.
    [23]
    J. A. De Loera, F. Liu, and R. Yoshida. 2008. A generating function for all semi-magic squares and the volume of the Birkhoff polytope. J. Algebraic Comb. 30, 1 (2008), 113--139.
    [24]
    P. Diaconis and B. Sturmfels. 1998. Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26, 1 (02 1998), 363--397.
    [25]
    M. E. Dyer and A. M. Frieze. 1988. On the complexity of computing the volume of a polyhedron. SIAM J. Comput. 17, 5 (1988), 967--974.
    [26]
    M. Dyer, A. Frieze, and R. Kannan. 1991. A random polynomial-time algorithm for approximating the volume of convex bodies. J. ACM 38, 1 (1991), 1--17.
    [27]
    M. Dyer, R. Kannan, and J. Mount. 1997. Sampling contingency tables. Random Struct. Algorithms 10 (1997), 487--506.
    [28]
    G. Elekes. 1986. A geometric inequality and the complexity of computing volume. Discrete Comput. Geom. 1 (1986), 289--292.
    [29]
    I. Z. Emiris and V. Fisikopoulos. 2014. Efficient random-walk methods for approximating polytope volume. In Proc. Symp. on Computational Geometry. ACM, Kyoto, Japan, 318--325.
    [30]
    K. Fischer, B. Gärtner, T. Herrmann, M. Hoffmann, and S. Schönherr. 2013a. Bounding volumes. In CGAL User and Reference Manual (4.3 ed.). CGAL Editorial Board. Retrieved from http://doc.cgal.org/4.3/Manual/packages.html#PkgBoundingVolumesSummary.
    [31]
    K. Fischer, B. Gärtner, S. Schönherr, and F. Wessendorp. 2013b. Linear and quadratic programming solver. In CGAL User and Reference Manual (4.3 ed.). CGAL Editorial Board. http://doc.cgal.org/4.3/Manual/packages.html#PkgQPSolverSummary.
    [32]
    M. Grötschel, L. Lovász, and A. Schrijver. 1993. Geometric Algorithms and Combinatorial Optimization (2nd corrected ed.). Algorithms and Combinatorics, Vol. 2. Springer, Berlin.
    [33]
    G. Guennebaud, B. Jacob, et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org.
    [34]
    U. Jaekel. 2011. A Monte Carlo method for high-dimensional volume estimation and application to polytopes. Proced. Comput. Sci. 4 (2011), 1403--1411.
    [35]
    R. Kannan, L. Lovász, and M. Simonovits. 1997. Random walks and an O(n<sup>5</sup>) volume algorithm for convex bodies. Rand. Struct. Algor. 11 (1997), 1--50.
    [36]
    R. Kannan and H. Narayanan. 2012. Random walks on polytopes and an affine interior point method for linear programming. Math. Op. Res. 37, 1 (2012), 1--20.
    [37]
    R. Kannan and S. Vempala. 1997. Sampling lattice points. In Proc. Symp. Theory of Computing. ACM, New York, 696--700.
    [38]
    L. Khachiyan. 1993. Complexity of polytope volume computation. In New Trends in Discrete and Computational Geometry. Springer, Berlin, 91--101.
    [39]
    L. G. Khachiyan. 1996. Rounding of polytopes in the real number model of computation. Math. Oper. Res. 21, 2 (1996), 307--320.
    [40]
    J. Lawrence. 1991. Polytope volume computation. AMS Math. Comput. 57, 195 (1991), 259--271.
    [41]
    S. Liu, J. Zhang, and B. Zhu. 2007. Volume computation using a direct Monte Carlo method. In Comp. and Combinatorics., G. Lin (Ed.). LNCS, Vol. 4598. Springer, Berlin, 198--209.
    [42]
    L. Lovász. 1999. Hit-and-run mixes fast. Math. Program. 86 (1999), 443--461. Issue 3.
    [43]
    L. Lovász and I. Deák. 2012. Computational results of an O(n<sup>4</sup>) volume algorithm. Eur. J. Op. Res. 216, 1 (2012), 152--161.
    [44]
    L. Lovász and S. Vempala. 2006a. Hit-and-run from a corner. SIAM J. Comput. 35, 4 (2006), 985--1005.
    [45]
    L. Lovász and S. Vempala. 2006b. Simulated annealing in convex bodies and an O*(n<sup>4</sup>) volume algorithm. J. Comp. Syst. Sci. 72, 2 (2006), 392--417.
    [46]
    J. Maurer. 2000. Boost: C++ Libraries. Chapter 23. Boost Random. Retrieved from www.boost.org/doc/libs/1_54_0/doc/html/ boost_random.html.
    [47]
    L. Mohácsi and I. Deák. 2015. A parallel implementation of an O(n<sup>4</sup>) volume algorithm. Cent. Eur. J. Op. Res. 3, 24 (2015), 1--28.
    [48]
    M. Muja. 2011. FLANN: Fast Library for Approximate Nearest Neighbors. Retrieved October 2013 from http://mloss.org/software/view/143/.
    [49]
    E. A. Ramos. 1999. On range reporting, ray shooting and K-level construction. In Proc. Symp. on Computational Geometry. ACM, New York, 390--399.
    [50]
    S. Reisner, C. Schütt, and E. Werner. 2001. Dropping a vertex or a facet from a convex polytope. Forum Math. 13, 3 (2001), 359--378.
    [51]
    M. Simonovits. 2003. How to compute the volume in high dimension? Math. Program. (2003), 337--374.
    [52]
    R. L. Smith. 1984. Efficient Monte Carlo procedures for generating points uniformly distributed over bounded regions. Op. Res. 32, 6 (1984), 1296--1308.
    [53]
    R. Stanley. 1986. Two poset polytopes. DiscreteComput. Geom. 1, 1 (1986), 9--23.
    [54]
    S. Vempala. 2005. Geometric random walks: A survey. Comb. Comput. Geom. 52 (2005), 573--612.
    [55]
    A. William and V. J. B. Escriba. 2007. Boost: C++ Libraries. Chapter 32. Thread. Retrieved from http://www.boost.org/doc/libs/1_56_0/doc/html/thread.html.
    [56]
    Y. Zheng and K. Yamane. 2013. Ray-shooting algorithms for robotics. IEEE Trans. Autom. Sci. Eng. 10, 4 (2013), 862--874.

    Cited By

    View all
    • (2024)CTL Model Checking of MDPs over Distribution Spaces: Algorithms and Sampling-based ComputationsProceedings of the 27th ACM International Conference on Hybrid Systems: Computation and Control10.1145/3641513.3651397(1-12)Online publication date: 14-May-2024
    • (2024)Aggregation of building predictive energy flexibility in smart microgridInternational Journal of Electrical Power & Energy Systems10.1016/j.ijepes.2024.110073160(110073)Online publication date: Sep-2024
    • (2023)Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte CarloACM Transactions on Mathematical Software10.1145/358950549:2(1-25)Online publication date: 15-Jun-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Mathematical Software
    ACM Transactions on Mathematical Software  Volume 44, Issue 4
    December 2018
    305 pages
    ISSN:0098-3500
    EISSN:1557-7295
    DOI:10.1145/3233179
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 June 2018
    Accepted: 01 February 2018
    Revised: 01 January 2017
    Received: 01 March 2015
    Published in TOMS Volume 44, Issue 4

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Volume approximation
    2. algorithm engineering
    3. birkhoff polytopes
    4. general dimension
    5. open source software
    6. polytope oracle
    7. random walk

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • European Union's Horizon 2020 research and innovation programme

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)88
    • Downloads (Last 6 weeks)11
    Reflects downloads up to 11 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)CTL Model Checking of MDPs over Distribution Spaces: Algorithms and Sampling-based ComputationsProceedings of the 27th ACM International Conference on Hybrid Systems: Computation and Control10.1145/3641513.3651397(1-12)Online publication date: 14-May-2024
    • (2024)Aggregation of building predictive energy flexibility in smart microgridInternational Journal of Electrical Power & Energy Systems10.1016/j.ijepes.2024.110073160(110073)Online publication date: Sep-2024
    • (2023)Truncated Log-concave Sampling for Convex Bodies with Reflective Hamiltonian Monte CarloACM Transactions on Mathematical Software10.1145/358950549:2(1-25)Online publication date: 15-Jun-2023
    • (2023)A Practical Algorithm for Volume Estimation based on Billiard Trajectories and Simulated AnnealingACM Journal of Experimental Algorithmics10.1145/358418228(1-34)Online publication date: 3-Mar-2023
    • (2023)Practical volume approximation of high-dimensional convex bodies, applied to modeling portfolio dependencies and financial crisesComputational Geometry: Theory and Applications10.1016/j.comgeo.2022.101916109:COnline publication date: 1-Feb-2023
    • (2022)Probabilistic Analysis of Network Availability2022 IEEE 30th International Conference on Network Protocols (ICNP)10.1109/ICNP55882.2022.9940438(1-11)Online publication date: 30-Oct-2022
    • (2022)Efficient sampling in spectrahedra and volume approximationLinear Algebra and its Applications10.1016/j.laa.2022.04.002648(205-232)Online publication date: Sep-2022
    • (2022)Approximate weighted model integration on DNF structuresArtificial Intelligence10.1016/j.artint.2022.103753311(103753)Online publication date: Oct-2022
    • (2022)Lower bounds for contingency tables via Lorentzian polynomialsIsrael Journal of Mathematics10.1007/s11856-022-2364-9253:1(43-90)Online publication date: 20-Oct-2022
    • (2021)Monte Carlo and Kinetic Monte Carlo Models for Deposition Processes: A Review of Recent WorksFrontiers in Physics10.3389/fphy.2021.6319189Online publication date: 13-Apr-2021
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media