Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Computing a high-dimensional euclidean embedding from an arbitrary smooth riemannian metric

Published: 30 July 2018 Publication History

Abstract

This article presents a new method to compute a self-intersection free high-dimensional Euclidean embedding (SIFHDE2) for surfaces and volumes equipped with an arbitrary Riemannian metric. It is already known that given a high-dimensional (high-d) embedding, one can easily compute an anisotropic Voronoi diagram by back-mapping it to 3D space. We show here how to solve the inverse problem, i.e., given an input metric, compute a smooth intersection-free high-d embedding of the input such that the pullback metric of the embedding matches the input metric. Our numerical solution mechanism matches the deformation gradient of the 3D → higher-d mapping with the given Riemannian metric. We demonstrate the applicability of our method, by using it to construct anisotropic Restricted Voronoi Diagram (RVD) and anisotropic meshing, that are otherwise extremely difficult to compute. In SIFHDE2-space constructed by our algorithm, difficult 3D anisotropic computations are replaced with simple Euclidean computations, resulting in an isotropic RVD and its dual mesh on this high-d embedding. Results are compared with the state-of-the-art in anisotropic surface and volume meshings using several examples and evaluation metrics.

Supplementary Material

ZIP File (062-453.zip)
Supplemental files.
MP4 File (062-453.mp4)
MP4 File (a62-zhong.mp4)

References

[1]
F. Alauzet and A. Loseille. 2010. High-Order Sonic Boom Modeling Based on Adaptive Methods. J. Comput. Phys. 229, 3 (2010), 561--593.
[2]
F. Alauzet and A. Lozeille. 2016. A Decade of Progress on Anisotropic Mesh Adaptation for Computational Fluid Dynamics. Computer-Aided Design 72 (2016), 13--39.
[3]
P. Alliez, D. Cohen-Steiner, O. Devillers, B. Lévy, and M. Desbrun. 2003. Anisotropic Polygonal Remeshing. ACM Trans. Graph. 22, 3 (2003), 485--493.
[4]
P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. 2005. Variational Tetrahedral Meshing. ACM Trans. Graph. 24, 3 (2005), 617--625.
[5]
J-D. Boissonnat, K. Shi, J. Tournois, and M. Yvinec. 2015a. Anisotropic Delaunay Meshes of Surfaces. ACM Trans. Graph. 34, 2 (2015), 14.
[6]
J-D. Boissonnat, C. Wormser, and M. Yvinec. 2008a. Anisotropic Diagrams: Labelle Shewchuk Approach Revisited. Theoretical Computer Science 408, 2-3 (2008), 163--173.
[7]
J-D. Boissonnat, C. Wormser, and M. Yvinec. 2008b. Locally Uniform Anisotropic Meshing. In Proceedings of the 24th annual symposium on Computational geometry. 270--277.
[8]
J-D. Boissonnat, C. Wormser, and M. Yvinec. 2015b. Anisotropic Delaunay Mesh Generation. SIAM J. Comput. 44, 2 (2015), 467--512.
[9]
H. Borouchaki, P. George, F. Hecht, P. Laug, and E. Saltel. 1997b. Delaunay Mesh Generation Governed by Metric Specifications. Part I. Algorithms. Finite Elements in Analysis and Design 25, 1-2 (1997), 61--83.
[10]
H. Borouchaki, P. George, and B. Mohammadi. 1997a. Delaunay Mesh Generation Governed by Metric Specifications. Part II. Applications. Finite Elements in Analysis and Design 25, 1-2 (1997), 85--109.
[11]
V. Borrelli, S. Jabrane, F. Lazarus, and B. Thibert. 2012. Flat Tori in Three-dimensional Space and Convex Integration. Proceedings of the National Academy of Sciences of the United States of America 109, 19 (2012).
[12]
F. Bossen and P. Heckbert. 1996. A Pliant Method for Anisotropic Mesh Generation. In 5th International Meshing Roundtable. 63--76.
[13]
M. Bronstein, A.Bronstein, R. Kimmel, and I. Yavneh. 2000. Multigrid Multidimensional Scaling. Numerical Linear Algebra with Applications 0 (2000), 1--6.
[14]
M. Bronstein, A. Bronstein, R. Kimmel, and I. Yavneh. 2005. A Multigrid Approach For Multi-Dimensional Scaling. In Proceedings of the Copper Mountain Conference on Multigrid Methods.
[15]
M. Budninskiy, B. Liu, F. de Goes, Y. Tong, P. Alliez, and M. Desbrun. 2016. Optimal Voronoi Tessellations with Hessian-based Anisotropy. ACM Trans. Graph. 35, 6 (2016), 242:1--242:12.
[16]
G. Canas and S. Gortler. 2006. Surface Remeshing in Arbitrary Codimensions. Visual Computer 22, 9 (2006), 885--895.
[17]
L. Chen, P. Sun, and J. Xu. 2007. Optimal Anisotropic Meshes for Minimizing Interpolation Errors in L<sup>p</sup>-Norm. Math. Comp. 76 (2007), 179--204.
[18]
L. Chen and J. Xu. 2004. Optimal Delaunay Triangulations. Journal of Computational Mathematics 22 (2004), 299--308.
[19]
Z. Chen, W. Wang, B. Lévy, L. Liu, and F. Sun. 2014. Revisiting Optimal Delaunay Triangulation for 3D Graded Mesh Generation. SIAM Journal Scientific Computing (2014).
[20]
H-L. Cheng, T. Dey, H. Edelsbrunner, and J. Sullivan. 2001. Dynamic Skin Triangulation. ACM-SIAM symposium on Discrete algorithms 25 (2001), 525--568.
[21]
S. Cheng, T. Dey, and E. Ramos. 2006. Anisotropic Surface Meshing. In Proceedings of ACM-SIAM Symposium on Discrete Algorithms. 202--211.
[22]
F. Courty, D. Leservoisier, P-L. George, and A. Dervieux. 2006. Continuous Metric and Mesh Adaptation. Applied Numerical Mathematics 55 (2006), 117--145.
[23]
J. Dardenne, S. Valette, N. Siauve, N. Burais, and R. Prost. 2009. Variational Tetrahedral Mesh Generation from Discrete Volume Data. The Visual Computer 25, 5 (2009), 401--410.
[24]
F. Dassi, A. Mola, and H. Si. 2014. Curvature-Adapted Remeshing of CAD Surfaces. In 23rd International Meshing Roundtable. 253--265.
[25]
F. Dassi, H. Si, S. Perotto, and T. Streckenbach. 2015. Anisotropic Finite Element Mesh Adaptation via Higher Dimensional Embedding. In 24th International Meshing Roundtable. 265--277.
[26]
C. Dobrzynski and P. Frey. 2008. Anisotropic Delaunay Mesh Adaptation for Unsteady Simulations. In 17th International Meshing Roundtable. 177--194.
[27]
Q. Du, V Faber, and M. Gunzburger. 1999. Centroidal Voronoi Tessellations: Applications and Algorithms. SIAM Rev. 41, 4 (1999), 637--676.
[28]
Q. Du and D. Wang. 2005a. Anisotropic Centroidal Voronoi Tessellations and Their Applications. SIAM Journal on Scientific Computing 26, 3 (2005), 737--761.
[29]
Q. Du and D. Wang. 2005b. The Optimal Centroidal Voronoi Tessellations and the Gersho's Conjecture in the Three-dimensional Space. Computers & Mathematics with Applications 49, 9 (2005), 1355--1373.
[30]
M. Freidlin. 1968. On the Factorization of Non-Negative Definite Matrices. Theory of Probability and Its Applications 13, 2 (1968), 354--356.
[31]
P. Frey and F. Alauzet. 2005. Anisotropic Mesh Adaptation for CFD Computations. Computer Methods in Applied Mechanics and Engineering 194, 48-49 (2005), 5068--5082.
[32]
P. Frey and H. Borouchaki. 1997. Surface Mesh Evaluation. In 6th International Meshing Roundtable. 363--373.
[33]
X. Fu, Y. Liu, J. Snyder, and B. Guo. 2014. Anisotropic Simplicial Meshing using Local Convex Functions. ACM Trans. Graph. 33, 6 (2014), 182:1--182:11.
[34]
G. Golub and C. Loan. 1996. Matrix Computations (3rd Ed.). Johns Hopkins University Press, Baltimore, Maryland.
[35]
M. Gromov. 2017. Geometric, Algebraic, and Analytic Descendants of Nash Isometric Embedding Theorems. Bull. Amer. Math. Soc. 54, 2 (2017), 173--245.
[36]
M. Gromov and V Rokhlin. 1970. Embeddings and Immersions in Riemannian Geometry. Russian Mathematical Surveys 25, 5 (1970), 1--57.
[37]
Q. Han and J-X. Hong. 2006. Isometric Embedding of Riemannian Manifolds in Euclidean Spaces. Vol. 13. American Mathematical Society.
[38]
P. Heckbert and M. Garland. 1999. Optimal Triangulation and Quadric-Based Surface Simplification. Computational Geometry 14, 1-3 (1999), 49--65.
[39]
J-X. Hong. 1993. Realization in R<sup>3</sup> of Complete Riemannian Manifolds with Negative Curvature. Communications in Analysis and Geometry 1, 4 (1993), 487--514.
[40]
K. Itô. 1950. Stochastic Differential Equations in a Differentiable Manifold. Nagoya Mathematical Journal 1 (1950), 35--47.
[41]
B. Klingner. 2008. Tetrahedral Mesh Improvement. Ph.D. Thesis, Dep. of Elec. Eng. and Comp. Sciences U. of California at Berkeley.
[42]
B. Klingner and J. Shewchuk. 2007. Agressive Tetrahedral Mesh Improvement. In Proceedings of 16th International Meshing Roundtable. 3--23.
[43]
D. Kovacs, A. Myles, and D. Zorin. 2010. Anisotropic Quadrangulation. In Proceedings of the 14th ACM Symposium on Solid and Physical Modeling (SPM '10). 137--146.
[44]
N. Kuiper. 1955. On C<sup>1</sup>-isometric Embeddings I. In Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen. 545--556.
[45]
B. Lévy. 2016. Robustness and Efficiency of Geometric Programs: The Predicate Construction Kit (PCK). Computer-Aided Design 72 (2016), 3--12.
[46]
B. Lévy and N. Bonneel. 2012. Variational Anisotropic Surface Meshing with Voronoi Parallel Linear Enumeration. In 21st International Meshing Roundtable. 349--366.
[47]
D. Liu and J. Nocedal. 1989. On the Limited Memory BFGS Method for Large Scale Optimization. Mathematical Programming 45, 3 (1989), 503--528.
[48]
Y. Liu, W. Wang, B. Lévy, F. Sun, D. Yan, L. Lu, and C. Yang. 2009. On Centroidal Voronoi Tessellation - Energy Smoothness and Fast Computation. ACM Trans. Graph. 28, 4 (2009), 101:1--101:17.
[49]
S. Lloyd. 1982. Least Squares Quantization in PCM. IEEE Transactions on Information Theory 28, 2(1982), 129--137.
[50]
A. Loseille and R. Löhner. 2016. Anisotropic Mesh Generation for High-fidelity Simulations in CFD. INRIA (2016). preprint.
[51]
E. Marchandise, C. Geuzaine, and J.F. Remacle. 2013. Cardiovascular and Lung Mesh Generation Based on Centerlines. International Journal for Numerical Methods in Biomedical Engineering 29, 6 (2013), 665--682.
[52]
R. Narain, A. Samii, and J. F. O'Brien. 2012. Adaptive Anisotropic Remeshing for Cloth Simulation. ACM Trans. Graph. 31, 6 (2012), 147:1--147:10.
[53]
J. Nash. 1954. C<sup>1</sup>-isometric embeddings. Annals of Mathematics 60, 3 (1954), 383--396.
[54]
S. Ni, Z. Zhong, Y. Liu, W. Wang, Z. Chen, and X. Guo. 2017. Sliver-suppressing Tetrahedral Mesh Optimization with Gradient-based Shape Matching Energy. Computer Aided Geometric Design 52 (2017), 247--261.
[55]
D. Panozzo, E. Puppo, M. Tarini, and O. Sorkine-Hornung. 2014. Frame Fields: Anisotropic and Non-Orthogonal Cross Fields. ACM Trans. Graph. 33, 4 (2014), 134:1--134:11.
[56]
M. Rouxel-Labbé, M. Wintraecken, and J-D. Boissonnat. 2016. Discretized Riemannian Delaunay Triangulations. Procedia Engineering 163 (2016), 97--109.
[57]
E. Sauvage, J. Remacle, and E. Marchandise. 2014. Metric Field Construction for Anisotropic Mesh Adaptation with Application to Blood Flow Simulations. International Journal for Numerical Methods in Biomedical Engineering 30, 11 (2014), 1326--1346.
[58]
K. Shimada and D. Gossard. 1995. Bubble Mesh: Automated Triangular Meshing of Non-manifold Geometry by Sphere Packing. In Proceedings of the 3rd ACM Symposium on Solid Modeling and Applications. 409--419.
[59]
K. Shimada, A. Yamada, and T. Itoh. 1997. Anisotropic Triangular Meshing of Parametric Surfaces via Close Packing of Ellipsoidal Bubbles. In 6th International Meshing Roundtable. 375--390.
[60]
R. Simpson. 1994. Anisotropic Mesh Transformations and Optimal Error Control. Applied Numerical Mathematics 14, 1-3 (1994), 183--198.
[61]
O. Sorkine-Hornung and M. Alexa. 2007. As-rigid-as-possible Surface Modeling. In Proceedings of the fifth Eurographics symposium on Geometry processing. 109--116.
[62]
R. Sumner and J. Popović. 2004. Deformation Transfer for Triangle Meshes. ACM Trans. Graph. 23, 3 (2004), 399--405.
[63]
J. Tournois, R. Srinivasan, and P. Alliez. 2009. Perturbing Slivers in 3D Delaunay Meshes. Proceedings of the 18th international meshing roundtable (2009), 157--173.
[64]
S. Valette, J. Chassery, and R. Prost. 2008. Generic Remeshing of 3D Triangular Meshes with Metric-Dependent Discrete Voronoi Diagrams. IEEE Trans. Vis. Comput. Graph. 14, 2 (2008), 369--381.
[65]
N. Verma. 2012. Distance Preserving Embeddings for General n-Dimensional Manifolds. Journal of Machine Learning Research volume 14 (2012), 2415--2448.
[66]
S. Yamakawa and K. Shimada. 2000. High Quality Anisotropic Tetrahedral Mesh Generation via Packing Ellipsoidal Bubbles. In 9th International Meshing Roundtable. 263--273.
[67]
D. Yan, B. Lévy, Y Liu, F. Sun, and W. Wang. 2009. Isotropic Remeshing with Fast and Exact Computation of Restricted Voronoi Diagram. Computer Graphics Forum 28, 5 (2009), 1445--1454.
[68]
D. Yan, W. Wang, B. Lévy, and Y. Liu. 2013. Efficient Computation of Clipped Voronoi Diagram for Mesh Generation. Computer-Aided Design 45, 4 (2013), 843--852.
[69]
Z. Zhong, X. Guo, W Wang, B. Lévy, F. Sun, Y. Liu, and W. Mao. 2013. Particle-Based Anisotropic Surface Meshing. ACM Trans. Graph. 32, 4 (2013), 99:1--99:14.
[70]
Z. Zhong, L. Shuai, M. Jin, and X. Guo. 2014. Anisotropic Surface Meshing with Conformal Embedding. Graphical Models 76, 5 (2014), 468--483.

Cited By

View all

Index Terms

  1. Computing a high-dimensional euclidean embedding from an arbitrary smooth riemannian metric

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 4
      August 2018
      1670 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3197517
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 30 July 2018
      Published in TOG Volume 37, Issue 4

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. anisotropic meshing
      2. anisotropic voronoi diagram
      3. high-dimensional (high-d) embedding
      4. self-intersection free

      Qualifiers

      • Research-article

      Funding Sources

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)182
      • Downloads (Last 6 weeks)31
      Reflects downloads up to 13 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Anisotropic triangular meshing using metric-adapted embeddingsComputer Aided Geometric Design10.1016/j.cagd.2024.102314111(102314)Online publication date: Jun-2024
      • (2024)Approximation and bounding techniques for the Fisher-Rao distances between parametric statistical modelsProbability Models10.1016/bs.host.2024.06.003(67-116)Online publication date: 2024
      • (2023)Building a Gyroid from Flat SheetsProceedings of the 8th ACM Symposium on Computational Fabrication10.1145/3623263.3629158(1-2)Online publication date: 8-Oct-2023
      • (2022)Modeling and rendering non-euclidean spaces approximated with concatenated polytopesACM Transactions on Graphics10.1145/3528223.353018641:4(1-13)Online publication date: 22-Jul-2022
      • (2022)GeodesicEmbedding (GE): A High-Dimensional Embedding Approach for Fast Geodesic Distance QueriesIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2021.310997528:12(4930-4939)Online publication date: 1-Dec-2022
      • (2022)Surface Remeshing: A Systematic Literature Review of Methods and Research DirectionsIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2020.301664528:3(1680-1713)Online publication date: 1-Mar-2022
      • (2020)Reinforced FDMACM Transactions on Graphics10.1145/3414685.341783439:6(1-15)Online publication date: 27-Nov-2020
      • (2019)Anisotropic Surface Remeshing without Obtuse AnglesComputer Graphics Forum10.1111/cgf.1387738:7(755-763)Online publication date: 14-Nov-2019
      • (2019)Surface reconstruction by parallel and unified particle-based resampling from point cloudsComputer Aided Geometric Design10.1016/j.cagd.2019.04.011Online publication date: Apr-2019
      • (2019)Nash embedding: a road map to realizing quantum hardwareDigitale Welt10.1007/s42354-019-0241-44:1(92-94)Online publication date: 4-Dec-2019

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media