Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

Computational Complexity and Probability Constructions

Published: 01 April 1970 Publication History
First page of PDF

References

[1]
BLUM, M. A machine independent theory of the complexity of recursive functions. J. ACM 14, 2 (April 1967), 322-336.
[2]
CHAITIN, G.J. On the length of programs for computing finite binary sequences. J. ACM 13, 4 (Oct. 1966), 547-569.
[3]
----. On the length of programs for computing finite binary sequences: Statistical considerations. J. ACM 16, 1 (Jan. 1969), 145-159.
[4]
FANO, R.M. Transmission of Information. MIT Press, Cambridge, Mass., and Wiley, New York, 1961 (published jointly).
[5]
GOLDMAN, S. Information Theory. Prentice-Hall, Englewood Cliffs, N. J., 1953.
[6]
GREEN, M.W. A lower bound on Rado's sigma function for binary Turing machines. Switching Circuit Theory and Logical Design, IEEE Pub. S-164, 1964, pp. 91-94.
[7]
HARTMANIS, J., AND STEARNS, ~:~. E. On the computational complexity of algorithms. Trans. Amer. Math. Soc. 117 (May 1965), 285-306.
[8]
KOLMOGOROV, A. N. Grundbegriffe der Wahrscheinlichkeitsrechnung. Springer, Berlin, 1933; translated, ed., Foundations of the Theory of Probability, Morrison, Nathan, transl., Chelsea, New York, 1956.
[9]
----. On tables of random numbers. Sankhyd. The Indian Journal of Statistics {A}, 25, 4 (1963), 369-376.
[10]
----. Three approaches to the quantitative definition of information. Inform. Transmission 1 (1965), 3-11.
[11]
, ----. Logical basis for information theory and probability theory. IEEE Trans. IT-14, 5 (Sept. 1968), 662-664.
[12]
MARTIN-LoF, P. The definition of random sequences. Inform. Control 9 (1966), 602-619.
[13]
MINSKY, M. L. Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs, N. J., 1967.
[14]
RITCHIE, R.W. Classes of predictably computable functions. Trans. Amer. Math. Soc. 106 (1963), 139-173.
[15]
RUSSELL, B. A.W. Les paradoxes de la logique. Revue de M~taphysique el de Morale 14 (1906), 627-650.
[16]
SHANNON, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 27 (1948), 379-423.
[17]
--. A universal Turing machine with two internal states. In Automata Studies, Shannon, C. E., and McCarthy, J. (Eds.), Princeton U. Press, Princeton, N. J., 1956, pp. 157-165.
[18]
SOLOMONOFF, R. J. A formal theory of inductive inference, Pt. I. Inform. Control. 7 (1964), 1-22.
[19]
STEARNS, R. E., HARTMANIS, J., AND LEWIS, P.M. Hierarchies of memory limited computations. IEEE Conf. Rec. on Switching Circuit Theory and Logical Design, IEEE Pub. 16C13, 1965, 179-190.
[20]
TURING, A.M. On computable numbers, with an application to the Entscheidungsproblem. Proc. London Math. Soc. {2}, 42 (1936-1937), 230-265; correction in Proc. London Math. Soc. {2}, 43 (1937), 544-546.
[21]
VON MISES R. Probability, Statistics and Truth. William Hodge, London, 1939.
[22]
WILLIS, D. G. The Mechanism of Inductive Inference. Stanford U., Stanford, Calif., June 3, 1968.

Cited By

View all

Index Terms

  1. Computational Complexity and Probability Constructions

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image Journal of the ACM
      Journal of the ACM  Volume 17, Issue 2
      April 1970
      200 pages
      ISSN:0004-5411
      EISSN:1557-735X
      DOI:10.1145/321574
      Issue’s Table of Contents

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 01 April 1970
      Published in JACM Volume 17, Issue 2

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)65
      • Downloads (Last 6 weeks)13
      Reflects downloads up to 12 Nov 2024

      Other Metrics

      Citations

      Cited By

      View all

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media