Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

Solving Boundary-Value Problems by Imbedding

Published: 01 October 1971 Publication History
First page of PDF

References

[1]
KELLER, H. B. Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell Publ. Co., Boston, 1968.
[2]
WASSERSTROM, E. A new method for solving eigenvalue problems. (To be published.)
[3]
WASSERSTROM, E. Eigenvalue problems ofnon-self-adjoint linear operators. (To be published.)
[4]
WASSERSTROM, E. Root finding of polynomials as an initial-value problem. J. Comput. Phys. (To be published.)
[5]
BELLMAN, R., AND KALABA, R.' E. Quasilinearization and Nonlinear Boundary-Value Problems. American Elsevier Publ. Co., New York, 1965.
[6]
ROBERTS, S. M., SHIPMAN, S. J., AND ELLIS, W.J. A perturbation technique for nonlinear two-point boundary value problem. SIAM J. Numer. Anal. 6 (1969), 347-358.
[7]
GLASSER, D. Numerical solution of two-point boundary value problems of total differential equations. SIAM J. Numer. Anal. 6 (1969), 591-597.
[8]
BELLMAN, R., KALABA, R. E., AND WING, G.M. Invariant imbedding and mathematical physics-I: particle processes. J. Math. Phys. I (1960), 280-308.
[9]
KLAMKIN, M.S. On the transformation of a class of boundary value problems into initial value problems for ordinary differential equations. SIAM Rev. $ (1962), 43-47.
[10]
NA, T.Y. Transforming boundary conditions to initial conditions for ordinary differential equations. SIAM Rev. 9 (1967), 204-210.
[11]
BELFORD, G.G. An initial value problem approach to the solution of eigenvalue problems. SIAM J. Numer. Anal. 6 (1969), 99-103.
[12]
GOLDSTEIN, S. Modern Development in Fluid Dynamics, Vol. I. Oxford U. Press, London, 1957, p. 135.
[13]
FORSYTHE, A. I., KEENAN, T. H., ORGANICK, E. I., AND STENDERG, W. Computer Science: A First Course. Wiley, New York 1969, p. 171.
[14]
CRANE, P., AND FOX, P.A. "DESUB"--Integration of a first order system of ordinary differential equations. In Numerical Mathematics Computer Programs, Vol. 2. Bell Telephone Laboratories, Murry Hill, N.J., 1969.
[15]
CURLE, N., AND DAVIES, H .J . Modern Fluid Dynamics. Van Nostrand, Princeton, N.J., 1968, p. 195.
[16]
FICKEN, F. A. The continuation method for functional equations. Comm. Pure Appl. Math. $ (1951). 435---456.
[17]
ISAACSON, E., AND KELLER, H. B. Analysis of Numerical Methods. Wiley, New York, 1966.
[18]
MUFTI, I. H., CHOW, C. K., AND STOCK, F .T . Solution of ill-conditioned linear twopoint boundary-value problems by the Riccati transformation. SIAM Rev. 11 (1969), 616--619.

Cited By

View all
  • (2013)The epsilon variation method in two-point boundary-value problemsJournal of Optimization Theory and Applications10.1007/BF0093481412:2(136-151)Online publication date: 3-Aug-2013
  • (2007)Numerical solution of nonlinear equations by one-parameter imbedding methodsNumerical Functional Analysis and Optimization10.1080/016305681088160883:2(223-264)Online publication date: 26-Jun-2007
  • (1984)Robust nonlinear least squares estimation using the Chow-Yorke homotopy methodJournal of Guidance, Control, and Dynamics10.2514/3.199247:6(752-755)Online publication date: Nov-1984
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 18, Issue 4
Oct. 1971
170 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/321662
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 October 1971
Published in JACM Volume 18, Issue 4

Permissions

Request permissions for this article.

Check for updates

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)48
  • Downloads (Last 6 weeks)6
Reflects downloads up to 18 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2013)The epsilon variation method in two-point boundary-value problemsJournal of Optimization Theory and Applications10.1007/BF0093481412:2(136-151)Online publication date: 3-Aug-2013
  • (2007)Numerical solution of nonlinear equations by one-parameter imbedding methodsNumerical Functional Analysis and Optimization10.1080/016305681088160883:2(223-264)Online publication date: 26-Jun-2007
  • (1984)Robust nonlinear least squares estimation using the Chow-Yorke homotopy methodJournal of Guidance, Control, and Dynamics10.2514/3.199247:6(752-755)Online publication date: Nov-1984
  • (1979)Solution of nonlinear boundary value problems—XIChemical Engineering Science10.1016/0009-2509(79)85109-X34:5(645-650)Online publication date: 1979
  • (1978)One-parameter imbedding techniques for the solution of nonlinear boundary-value problemsApplied Mathematics and Computation10.1016/0096-3003(78)90003-64:4(317-357)Online publication date: 1-Oct-1978
  • (1973)Identification of parameters by the continuation method.AIAA Journal10.2514/3.688111:8(1097-1101)Online publication date: Aug-1973
  • (1973)Numerical Solutions by the Continuation MethodSIAM Review10.1137/101500315:1(89-119)Online publication date: 1-Jan-1973
  • (1973)Analog Solutions of Nonlinear Boundary-Value Problems by the Continuation MethodIEEE Transactions on Computers10.1109/T-C.1973.22363222:11(966-970)Online publication date: 1-Nov-1973
  • (1972)A new method for solving eigenvalue problemsJournal of Computational Physics10.1016/0021-9991(72)90036-89:1(53-74)Online publication date: Feb-1972

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media