Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Hybrid grains: adaptive coupling of discrete and continuum simulations of granular media

Published: 04 December 2018 Publication History
  • Get Citation Alerts
  • Abstract

    We propose a technique to simulate granular materials that exploits the dual strengths of discrete and continuum treatments. Discrete element simulations provide unmatched levels of detail and generality, but prove excessively costly when applied to large scale systems. Continuum approaches are computationally tractable, but limited in applicability due to built-in modeling assumptions; e.g., models suitable for granular flows typically fail to capture clogging, bouncing and ballistic motion. In our hybrid approach, an oracle dynamically partitions the domain into continuum regions where safe, and discrete regions where necessary. The domains overlap along transition zones, where a Lagrangian dynamics mass-splitting coupling principle enforces agreement between the two simulation states. Enrichment and homogenization operations allow the partitions to evolve over time. This approach accurately and efficiently simulates scenarios that previously required an entirely discrete treatment.

    Supplementary Material

    ZIP File (a283-yue.zip)
    Supplemental files.
    MP4 File (a283-yue.mp4)

    References

    [1]
    Vincent Acary and Bernard Brogliato. 2008. Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics. Vol. 35. Springer Science & Business Media.
    [2]
    Pierre Alart and Alain Curnier. 1991. A mixed formulation for frictional contact problems prone to Newton like solution methods. Computer Methods in Applied Mechanics and Engineering 92, 3 (Nov. 1991), 353--375.
    [3]
    Berni Julian Alder and Thomas Everett Wainwright. 1957. Phase transition for a hard sphere system. The Journal of Chemical Physics 27, 5 (1957), 1208.
    [4]
    Berni Julian Alder and Thomas Everett Wainwright. 1959. Studies in molecular dynamics. I. General method. The Journal of Chemical Physics 31, 2 (1959), 459--466.
    [5]
    Berni Julian Alder and Thomas Everett Wainwright. 1960. Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. The Journal of Chemical Physics 33, 5 (1960), 1439--1451.
    [6]
    Iván Alduán and Miguel A. Otaduy. 2011. SPH Granular Flow with Friction and Cohesion. In Proceedings of the 2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA '11). 25--32.
    [7]
    Iván Alduán, Angel Tena, and Miguel A. Otaduy. 2009. Simulation of High-Resolution Granular Media. In CEIG. 11--18.
    [8]
    Christoph Ammann, Doug Bloom, Jonathan M. Cohen, John Courte, Lucio Flores, Sho Hasegawa, Nikos Kalaitzidis, Terrance Tornberg, Laurence Treweek, Bob Winter, and Chris Yang. 2007. The Birth of Sandman. In ACM SIGGRAPH 2007 Sketches (SIGGRAPH '07). Article 26.
    [9]
    Mihai Anitescu and Gary D. Hart. 2004a. A constraint-stabilized time-stepping approach for rigid multibody dynamics with joints, contact and friction. Internat. J. Numer. Methods Engrg. 60, 14 (2004), 2335--2371.
    [10]
    Mihai Anitescu and Gary D. Hart. 2004b. A fixed-point Iteration approach for multibody dynamics with contact and small friction. Mathematical Programming 101, 1 (2004), 3--32.
    [11]
    Igor S. Aranson and Lev S. Tsimring. 2002. Continuum theory of partially fluidized granular flows. Physical Review E 65, 6 (2002), 061303.
    [12]
    Jan A. Åström and Hans Jürgen Herrmann. 1998. Fragmentation of grains in a two-dimensional packing. The European Physical Journal B-Condensed Matter and Complex Systems 5, 3 (1998), 551--554.
    [13]
    Neil J. Balmforth and Richard R. Kerswell. 2005. Granular collapse in two dimensions. Journal of Fluid Mechanics 538 (Sep 2005), 399 -- 428.
    [14]
    David Baraff. 1989. Analytical Methods for Dynamic Simulation of Non-penetrating Rigid Bodies. Computer Graphics 23 (1989), 223--232.
    [15]
    Scott G. Bardenhagen and Edward M. Kober. 2004. The generalized interpolation material point method. Computer Modeling in Engineering and Sciences 5, 6 (2004), 477--496.
    [16]
    Nathan Bell, Yizhou Yu, and Peter J. Mucha. 2005. Particle-based simulation of granular materials. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics symposium on Computer animation. ACM, 77--86.
    [17]
    Oded Ben-Nun, Itai Einav, and Antoinette Tordesillas. 2010. Force attractor in confined comminution of granular materials. Physical Review Letters 104, 10 (2010), 108001.
    [18]
    Miklós Bergou, Saurabh Mathur, Max Wardetzky, and Eitan Grinspun. 2007. TRACKS: Toward directable thin shells. SIGGRAPH (ACM Transactions on Graphics) 26, 3 (Jul 2007), 50.
    [19]
    Wim A. Beverloo, H. A. Leniger, and J. Van de Velde. 1961. The flow of granular solids through orifices. Chemical Engineering Science 15, 3 (1961), 260--269.
    [20]
    Olivier Bonnefon and Gilles Daviet. 2011. Quartic formulation of Coulomb 3D frictional contact. Technical Report RT-0400. INRIA.
    [21]
    Jean-Philippe Bouchaud, Michael E. Cates, Jagadeeshan Ravi Prakash, and Sam F. Edwards. 1994. A model for the dynamics of sandpile surfaces. Journal de Physique I 4, 10 (1994), 1383--1410.
    [22]
    Bernard Brogliato. 2012. Nonsmooth mechanics: models, dynamics and control. Springer Science & Business Media.
    [23]
    Eric Brown, Nicholas Rodenberg, John Amend, Annan Mozeika, Erik Steltz, Mitchell R. Zakin, Hod Lipson, and Heinrich M. Jaeger. 2010. Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences 107, 44 (2010), 18809--18814.
    [24]
    Benoit Chanclou, Annie Luciani, and Arash Habibi. 1996. Physical models of loose soils dynamically marked by a moving object. In Computer Animation '96. Proceedings. 27--35.
    [25]
    Nuttapong Chentanez, Matthias Müller, and Tae-Yong Kim. 2015. Coupling 3D Eulerian, Heightfield and Particle Methods for Interactive Simulation of Large Scale Liquid Phenomena. IEEE Transactions on Visualization and Computer Graphics 21, 10 (Oct 2015), 1116--1128.
    [26]
    Jes Christoffersen, Morteza Monte Mehrabadi, and Sia Nemat-Nasser. 1981. A micromechanical description of granular material behavior. Journal of applied mechanics 48, 2 (1981), 339--344.
    [27]
    Michael B. Cline and Dinesh K. Pai. 2003. Post-stabilization for rigid body simulation with contact and constraints. In Robotics and Automation, 2003. Proceedings. ICRA'03. IEEE International Conference on, Vol. 3. IEEE, 3744--3751.
    [28]
    Peter A. Cundall and Otto D. L. Strack. 1979. A discrete numerical model for granular assemblies. Géotechnique 29, 1 (1979), 47--65.
    [29]
    Yannis F. Dafalias, Achilleas G. Papadimitriou, and Xiang S. Li. 2004. Sand plasticity model accounting for inherent fabric anisotropy. Journal of Engineering Mechanics 130, 11 (2004), 1319--1333.
    [30]
    Gilles Daviet and Florence Bertails-Descoubes. 2016. A Semi-implicit Material Point Method for the Continuum Simulation of Granular Materials. ACM Trans. Graph. 35, 4 (July 2016), 102:1--102:13.
    [31]
    Gilles Daviet, Florence Bertails-Descoubes, and Laurence Boissieux. 2011. A Hybrid Iterative Solver for Robustly Capturing Coulomb Friction in Hair Dynamics. ACM Trans. Graph. 30, 6 (2011), 139:1--139:12.
    [32]
    Hachmi Ben Dhia. 1998. Multiscale mechanical problems: the Arlequin method. Comptes Rendus de l'Academie des Sciences Series IIB Mechanics Physics Astronomy 12, 326 (1998), 899--904.
    [33]
    Joshua A Dijksman and Martin van Hecke. 2010. Granular flows in split-bottom geometries. Soft Matter 6, 13 (2010), 2901--2907.
    [34]
    Sachith Dunatunga and Ken Kamrin. 2015. Continuum modelling and simulation of granular flows through their many phases. Journal of Fluid Mechanics 779 (2015), 483--513.
    [35]
    Christian Duriez, Frederic Dubois, Abderrahmane Kheddar, and Claude Andriot. 2006. Realistic Haptic Rendering of Interacting Deformable Objects in Virtual Environments. IEEE Transactions on Visualization and Computer Graphics 12, 1 (Jan. 2006), 36--47.
    [36]
    Kenny Erleben. 2007. Velocity-based Shock Propagation for Multibody Dynamics Animation. ACM Trans. Graph. 26, 2, Article 12 (June 2007).
    [37]
    Florian Ferstl, Ryoichi Ando, Chris Wojtan, Rüdiger Westermann, and Nils Thuerey. 2016. Narrow Band FLIP for Liquid Simulations. Computer Graphics Forum 35, 2 (2016), 225--232.
    [38]
    Daan Frenkel and Berend Smit. 2001. Understanding Molecular Simulation: From Algorithms to Applications. Vol. 1. Academic Press.
    [39]
    Jason Alfredo Carlson Gallas, Hans Jürgen Herrmann, and Stefan Sokołowski. 1992. Convection cells in vibrating granular media. Physical Review Letters 69, 9 (1992), 1371.
    [40]
    Ming Gao, Andre Pradhana, Xuchen Han, Qi Guo, Grant Kot, Eftychios Sifakis, and Chenfanfu Jiang. 2018. Animating Fluid Sediment Mixture in Particle-Laden Flows. ACM Transactions on Graphics (TOG) 37, 4 (2018).
    [41]
    Ming Gao, Andre Pradhana Tampubolon, Chenfanfu Jiang, and Eftychios Sifakis. 2017. An adaptive generalized interpolation material point method for simulating elastoplastic materials. ACM Transactionson Graphics (TOG) 36, 6 (2017), 223.
    [42]
    Abhinav Golas, Rahul Narain, Jason Sewall, Pavel Krajcevski, Pradeep Dubey, and Ming C. Lin. 2012. Large-scale Fluid Simulation Using Velocity-vorticity Domain Decomposition. ACM Trans.Graph. 31, 6, Article 148 (Nov. 2012), 9 pages.
    [43]
    Groupement de Recherche Milieux Divisés (GDR MiDi). 2004. On dense granular flows. The European Physical Journal E 14, 4 (2004), 341--365.
    [44]
    Peter K. Haff and Bradley T. Werner. 1986. Computer simulation of the mechanical sorting of grains. Powder Technology 48, 3 (1986), 239--245.
    [45]
    Seth R. Holladay. 2013. Optimized Simulation of Granular Materials. Ph.D. Dissertation. Brigham Young University.
    [46]
    Seth R. Holladay and Parris Egbert. 2012. Solid-state Culled Discrete Element Granular Systems. In Eurographics 2012-Short Papers, Carlos Andujar and Enrico Puppo (Eds.). The Eurographics Association.
    [47]
    William Graham Hoover. 1986. Molecular Dynamics. Springer-Verlag. Shu-Wei Hsu and John Keyser. 2010. Piles of Objects. ACM Trans. Graph. 29, 6 (Dec. 2010), 155:1--155:6.
    [48]
    Yuanming Hu, Yu Fang, Ziheng Ge, Ziyin Qu, Yixin Zhu, Andre Pradhana, and Chenfanfu Jiang. 2018. A Moving Least Squares Material Point Method with Displacement Discontinuity and Two-Way Rigid Body Coupling. ACM Transactions on Graphics (TOG) 37, 4 (2018).
    [49]
    Markus Ihmsen, Arthur Wahl, and Matthias Teschner. 2013. A Lagrangian framework for simulating granular material with high detail. Computers & Graphics 37, 7 (2013), 800--808.
    [50]
    Heinrich M. Jaeger, Sidney R. Nagel, and Robert P. Behringer. 1996. Granular solids, liquids, and gases. Rev. Mod. Phys. 68 (Oct 1996), 1259--1273. Issue 4.
    [51]
    Michel Jean. 1999. The Non-Smooth Contact Dynamics Method. Computer Methods in Applied Mechanical Engineering 177, 3--4 (1999), 235--257.
    [52]
    Michel Jean and Jean-Jacques Moreau. 1992. Unilaterality and dry friction in the dynamics of rigid body collections. In Proceedings of Contact Mechanics International Symposium, Vol. 1. 31--48.
    [53]
    Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Transactions on Graphics (TOG) 34, 4 (2015), 51.
    [54]
    Chenfanfu Jiang, Craig Schroeder, Joseph Teran, Alexey Stomakhin, and Andrew Selle. 2016. The Material Point Method for Simulating Continuum Materials. In ACM SIGGRAPH 2016 Courses (SIGGRAPH '16). ACM, New York, NY, USA, Article 24, 52 pages.
    [55]
    Pierre Jop, Yoël Forterre, and Olivier Pouliquen. 2006. A constitutive law for dense granular flows. Nature 441, 7094 (2006), 727--730.
    [56]
    Franck Jourdan, Pierre Alart, and Michel Jean. 1998. A Gauss-Seidel like algorithm to solve frictional contact problems. Computer Methods in Applied Mechanics and Engineering 155, 1 (March 1998), 31--47.
    [57]
    Ken Kamrin. 2008. Stochastic and Deterministic Models for Dense Granular Flow. Ph.D. Dissertation. Massachusetts Institute of Technology.
    [58]
    Ken Kamrin. 2010. Nonlinear elasto-plastic model for dense granular flow. International Journal of Plasticity 26, 2 (2010), 167--188.
    [59]
    Ken Kamrin and Georg Koval. 2012. Nonlocal constitutive relation for steady granular flow. Physical Review Letters 108, 17 (2012), 178301.
    [60]
    Ken Kamrin and Georg Koval. 2014. Effect of Particle Surface Friction on Nonlocal Constitutive Behavior of Flowing Granular Media. Computational Particle Mechanics 1, 2 (2014), 169--176.
    [61]
    Danny M. Kaufman, Shinjiro Sueda, Doug L. James, and Dinesh K. Pai. 2008. Staggered Projections for Frictional Contact in Multibody Systems. ACM Trans. Graph. 27, 5 (2008), 164:1--164:11.
    [62]
    Gergely Klár, Theodore Gast, Andre Pradhana, Chuyuan Fu, Craig Schroeder, Chenfanfu Jiang, and Joseph Teran. 2016. Drucker-prager Elastoplasticity for Sand Animation. ACM Trans. Graph. 35, 4, Article 103 (July 2016), 12 pages.
    [63]
    Georg Koval, Jean-Noël Roux, Alain Corfdir, and François Chevoir. 2009. Annular shear of cohesionless granular materials: From the inertial to quasistatic regime. Physical Review E 79, 2 (2009), 021306.
    [64]
    Harald Kruggel-Emden, Erdem Simsek, Stefan Rickelt, Siegmar Wirtz, and Viktor Scherer. 2007. Review and extension of normal force models for the discrete element method. Powder Technology 171, 3 (2007), 157--173.
    [65]
    Pierre-Yves Lagrée, Lydie Staron, and Stéphane Popinet. 2011. The granular column collapse as a continuum: Validity of a two-dimensional Navier-Stokes model with a μ (I)-rheology. Journal of Fluid Mechanics 686 (Nov. 2011), 378--408.
    [66]
    Cornelius Lanczos. 2012. The variational principles of mechanics.
    [67]
    Toon Lenaerts and Dutré Philip. 2009. Mixing Fluids and Granular Materials. Computer Graphics Forum 28, 2 (2009), 213--218.
    [68]
    Xin Li and J. Michael Moshell. 1993. Modeling Soil: Realtime Dynamic Models for Soil Slippage and Manipulation. In Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '93). 361--368.
    [69]
    Gert Lube, Herbert E. Huppert, R. Stephen J. Sparks, and Armin Freundt. 2005. Collapses of two-dimensional granular columns. Phys. Rev. E 72 (Oct 2005), 10. Issue 4.
    [70]
    Annie Luciani, Arash Habibi, and Emmanuel Manzotti. 1995. A multi-scale physical model of granular materials. In Graphics interface'95. 136--146.
    [71]
    Miles Macklin, Matthias Müller, Nuttapong Chentanez, and Tae-Yong Kim. 2014. Unified Particle Physics for Real-time Applications. ACM Trans. Graph. 33, 4, Article 153 (July 2014), 12 pages.
    [72]
    Carter M. Mast, Pedro Arduino, Peter Mackenzie-Helnwein, and Gregory R. Miller. 2015. Simulating granular column collapse using the Material Point Method. Acta Geotechnica 10, 1 (2015), 101--116.
    [73]
    Hammad Mazhar, Toby Heyn, Dan Negrut, and Alessandro Tasora. 2015. Using Nesterov's Method to Accelerate Multibody Dynamics with Friction and Contact. ACM Trans. Graph. 34, 3, Article 32 (May 2015), 14 pages.
    [74]
    Joseph J. McCarthy and Julio M. Ottino. 1998. Particle dynamics simulation: a hybrid technique applied to granular mixing. Powder Technology 97, 2 (1998), 91 -- 99.
    [75]
    Gavin Miller and Andrew Pearce. 1989. Globular dynamics: A connected particle system for animating viscous fluids. Computers & Graphics 13, 3 (1989), 305 -- 309.
    [76]
    Hiroshi Mio, Masatoshi Akashi, Atsuko Shimosaka, Yoshiyuki Shirakawa, Jusuke Hidaka, and Shinroku Matsuzaki. 2009. Speed-up of computing time for numerical analysis of particle charging process by using discrete element method. Chemical Engineering Science 64, 5 (2009), 1019 -- 1026.
    [77]
    L. Srinivasa Mohan, K. Kesava Rao, and Prabhu R. Nott. 2002. A frictional Cosserat model for the slow shearing of granular materials. Journal of Fluid Mechanics 457 (2002), 377--409.
    [78]
    Jean-Jacques Moreau. 1983. Standard Inelastic Shocks and the Dynamics of Unilateral Constraints. Courses and Lectures, Vol. 288. International Centre for Mechanical Sciences, 173--221.
    [79]
    Jean-Jacques Moreau. 1988. Unilateral Contact and Dry Friction in Finite Freedom Dynamics. Nonsmooth Mechanics and Applications, CISM Courses and Lectures 302 (1988), 1--82.
    [80]
    Kevin W. Munns. 2015. Gaseous Particulate Interaction in a 3-Phase Granular Simulation. Master's thesis. Brigham Young University.
    [81]
    Rahul Narain, Abhinav Golas, and Ming C. Lin. 2010. Free-flowing Granular Materials with Two-way Solid Coupling. ACM Trans. Graph. 29, 6, Article 173 (Dec. 2010), 10 pages.
    [82]
    Duc-Hanh Nguyen, Emilien Azéma, Farhang Radjai, and Philippe Sornay. 2015. Numerical Modeling of Particle Breaking Process in Granular Materials: Compaction and Evolution of Size Distribution. In Bifurcation and Degradation of Geomaterials in the New Millennium. Springer, 161--167.
    [83]
    Koichi Onoue and Tomoyuki Nishita. 2003. Virtual sandbox. In 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings. 252--259.
    [84]
    Marta Pla-Castells, Ignacio García-Fernandez, and Rafael J. Martinez-Dura. 2008. Physically-Based Interactive Sand Simulation. In Eurographics 2008 - Short Papers.
    [85]
    Thorsten Pöschel and Thomas Schwager. 2005. Computational Granular Dynamics: Models and Algorithms. Springer Science & Business Media.
    [86]
    Olivier Pouliquen. 1999. Scaling laws in granular flows down rough inclined planes. Physics of Fluids (1994-present) 11, 3 (1999), 542--548.
    [87]
    Tobias Preclik. 2014. Models and Algorithms for Ultrascale Simulations of Non-smooth Granular Dynamics. Ph.D. Dissertation. Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
    [88]
    Dennis C. Rapaport. 2004. The Art of Molecular Dynamics Simulation. Cambridge University Press.
    [89]
    Patrick Richard, Mario Nicodemi, Renaud Delannay, Philippe Ribière, and Daniel Bideau. 2005. Slow relaxation and compaction of granular systems. Nature Materials. 4 (2005), 121--128.
    [90]
    Leo Rothenburg and Richard J. Bathurst. 1989. Analytical study of induced anisotropy in idealized granular materials. Géotechnique 39, 4 (1989), 601--614.
    [91]
    Witawat Rungjiratananon, Zoltan Szego, Yoshihiro Kanamori, and Tomoyuki Nishita. 2008. Real-time Animation of Sand-Water Interaction. In Computer Graphics Forum, Vol. 27. 1887--1893.
    [92]
    Chris H. Rycroft, Ken Kamrin, and Martin Z. Bazant. 2009. Assessing continuum postulates in simulations of granular flow. Journal of the Mechanics and Physics of Solids 57, 5 (2009), 828--839.
    [93]
    Andrew Schofield and Peter Wroth. 1968. Critical State Soil Mechanics. McGraw-Hill, London.
    [94]
    Ahmed A. Shabana. 2013. Dynamics of multibody systems. Cambridge university press.
    [95]
    J. Shäfer, S. Dippel, and D. E. Wolf. 1996. Force schemes in simulations of granular materials. Journal de Physique I 6, 1 (1996), 5--20.
    [96]
    Hannah G. Sheldon and Douglas J. Durian. 2010. Granular discharge and clogging for tilted hoppers. Granular Matter 12, 6 (2010), 579--585.
    [97]
    Tomotsugu Shimokawa, Toshiyasu Kinari, and S Shintaku. 2007. Interaction mechanism between edge dislocations and asymmetrical tilt grain boundaries investigated via quasicontinuum simulations. Physical Review B 75, 14 (2007), 144108.
    [98]
    Juan C. Simo and Thomas J. R. Hughes. 1998. Computational Inelasticity. Springer.
    [99]
    Breannan Smith, Danny M. Kaufman, Etienne Vouga, Rasmus Tamstorf, and Eitan Grinspun. 2012. Reflections on Simultaneous Impact. ACM Trans. Graph. 31, 4 (July 2012), 106:1--106:12.
    [100]
    Gregory S. Smith, Ellad B. Tadmor, Noam Bernstein, and Efthimios Kaxiras. 2001. Multiscale simulations of silicon nanoindentation. Acta Materialia 49, 19 (2001), 4089--4101.
    [101]
    Russell Smith and others. 2005. Open dynamics engine. (2005).
    [102]
    Lydie Staron and John E. Hinch. 2005. Study of the collapse of granular columns using two-dimensional discrete-grain simulation. Journal of Fluid Mechanics 545 (2005), 1--27.
    [103]
    Michael Steffen, Robert M. Kirby, and Martin Berzins. 2008. Analysis and reduction of quadrature errors in the material point method (MPM). Internat. J. Numer. Methods Engrg. 76, 6 (2008), 922--948.
    [104]
    David E. Stewart. 2000. Rigid-body dynamics with friction and impact. SIAM review 42, 1 (2000), 3--39.
    [105]
    David E. Stewart. 2001. Finite-dimensional contact mechanics. Phil. Trans. R. Soc. Lond. A 359 (2001), 2467--2482.
    [106]
    David E. Stewart. 2011. Dynamics with Inequalities: Impacts and Hard Constraints. SIAM.
    [107]
    David E. Stewart and Jeff C. Trinkle. 1996. An Implicit Time-Stepping Scheme for Rigid Body Dynamics with Coulomb Friction. Internat. J. Numer. Methods Engrg. 39, 15 (1996), 2673--2691.
    [108]
    Alexey Stomakhin, Craig Schroeder, Lawrence Chai, Joseph Teran, and Andrew Selle. 2013. A Material Point Method for Snow Simulation. ACM Trans. Graph. 32, 4, Article 102 (July 2013), 10 pages.
    [109]
    Deborah Sulsky, Zhen Chen, and Howard L. Schreyer. 1994. A particle method for history-dependent materials. Computer methods in applied mechanics and engineering 118, 1 (1994), 179--196.
    [110]
    Robert W. Sumner, James F. O'Brien, and Jessica K. Hodgins. 1999. Animating Sand, Mud, and Snow. Computer Graphics Forum 18, 1 (1999), 17--26.
    [111]
    Ellad B. Tadmor, Rob Phillips, and Michael Ortiz. 1996. Mixed atomistic and continuum models of deformation in solids. Langmuir 12, 19 (1996), 4529--4534.
    [112]
    Andre Pradhana Tampubolon, Theodore Gast, Gergely Klár, Chuyuan Fu, Joseph Teran, Chenfanfu Jiang, and Ken Museth. 2017. Multi-species Simulation of Porous Sand and Water Mixtures. ACM Trans. Graph. 36, 4, Article 105 (July 2017), 11 pages.
    [113]
    Richard Tonge, Feodor Benevolenski, and Andrey Voroshilov. 2012. Mass Splitting for Jitter-free Parallel Rigid Body Simulation. ACM Trans. Graph. 31, 4, Article 105 (July 2012), 8 pages.
    [114]
    Andrea Toselli and Olof Widlund. 2006. Domain decomposition methods-algorithms and theory. Vol. 34. Springer Science & Business Media.
    [115]
    Olivier Tsoungui, Denis Vallet, and Jean-Claude Charmet. 1999. Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technology 105, 1 (1999), 190--198.
    [116]
    Thomas K. Uchida, Michael A. Sherman, and Scott L. Delp. 2015. Making a meaningful impact: Modelling simultaneous frictional collisions in spatial multibody systems. In Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Vol. 471. The Royal Society, 20140859.
    [117]
    Otis R. Walton and Robert L. Braun. 1986. Viscosity, granular-temperature, and stress calculations for shearing assemblies of inelastic, frictional disks. Journal of Rheology 30, 5 (1986), 949--980.
    [118]
    Chang-bo Wang, Qiang Zhang, Fan-long Kong, and Hong Qin. 2013. Hybrid particle-grid fluid animation with enhanced details. The Visual Computer 29, 9 (01 Sep 2013), 937--947.
    [119]
    Christian Wellmann and Peter Wriggers. 2012. A two-scale model of granular materials. Computer Methods in Applied Mechanics and Engineering 205--208, Supplement C (2012), 46 -- 58.
    [120]
    Zdzisław Więckowski. 2004. The material point method in large strain engineering problems. Computer methods in applied mechanics and engineering 193, 39--41 (2004), 4417--4438.
    [121]
    Beichuan Yan, Richard A. Regueiro, and Stein Sture. 2010. Three-dimensional ellipsoidal discrete element modeling of granular materials and its coupling with finite element facets. Engineering Computations 27, 4 (2010), 519--550.
    [122]
    Yonghao Yue, Breannan Smith, Christopher Batty, Changxi Zheng, and Eitan Grinspun. 2015. Continuum Foam: A Material Point Method for Shear-Dependent Flows. ACM Trans. Graph. 34, 5, Article 160 (Nov. 2015), 20 pages.
    [123]
    Zhennan Zhang and Xiurun Ge. 2005. A new quasi-continuum constitutive model for crack growth in an isotropic solid. European Journal of Mechanics-A/Solids 24, 2 (2005), 243--252.
    [124]
    Bo Zhu and Xubo Yang. 2010. Animating sand as a surface flow. Eurographics 2010, Short Papers (2010).
    [125]
    Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. 24, 3 (2005), 965--972.
    [126]
    Olgierd Cecil Zienkiewicz and Robert L. Taylor. 2000. The finite element method: The basis (5 ed.). Vol. 1. Butterworth and Heinemann.

    Cited By

    View all
    • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
    • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
    • (2024)Failure analysis of soil-rock mixture slopes using coupled MPM-DEM methodComputers and Geotechnics10.1016/j.compgeo.2024.106226169(106226)Online publication date: May-2024
    • Show More Cited By

    Index Terms

    1. Hybrid grains: adaptive coupling of discrete and continuum simulations of granular media

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 37, Issue 6
      December 2018
      1401 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3272127
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 04 December 2018
      Published in TOG Volume 37, Issue 6

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. constraints
      2. contact dynamics
      3. granular materials
      4. material point method
      5. physical simulation

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)143
      • Downloads (Last 6 weeks)8
      Reflects downloads up to 10 Aug 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)A Unified MPM Framework Supporting Phase-field Models and Elastic-viscoplastic Phase TransitionACM Transactions on Graphics10.1145/363804743:2(1-19)Online publication date: 3-Jan-2024
      • (2024)Rod-Bonded Discrete Element MethodGraphical Models10.1016/j.gmod.2024.101218133(101218)Online publication date: Jun-2024
      • (2024)Failure analysis of soil-rock mixture slopes using coupled MPM-DEM methodComputers and Geotechnics10.1016/j.compgeo.2024.106226169(106226)Online publication date: May-2024
      • (2024)A continuum–discrete multiscale methodology using machine learning for thermal analysis of granular mediaComputers and Geotechnics10.1016/j.compgeo.2024.106118168(106118)Online publication date: Apr-2024
      • (2024)Accelerating discrete particle simulation of particle-fluid systemsCurrent Opinion in Chemical Engineering10.1016/j.coche.2023.10098943(100989)Online publication date: Mar-2024
      • (2024)Physics-based fluid simulation in computer graphics: Survey, research trends, and challengesComputational Visual Media10.1007/s41095-023-0368-yOnline publication date: 27-Apr-2024
      • (2024)Review on research and development of planetary penetratorJournal of Field Robotics10.1002/rob.2232641:5(1570-1595)Online publication date: 29-Mar-2024
      • (2023)Neural Stress Fields for Reduced-order Elastoplasticity and FractureSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618207(1-11)Online publication date: 10-Dec-2023
      • (2023)Real-time Height-field Simulation of Sand and Water MixturesSIGGRAPH Asia 2023 Conference Papers10.1145/3610548.3618159(1-10)Online publication date: 10-Dec-2023
      • (2023)Towards RealtimeProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36069376:3(1-18)Online publication date: 24-Aug-2023
      • Show More Cited By

      View Options

      Get Access

      Login options

      Full Access

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media