Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3302504.3311810acmconferencesArticle/Chapter ViewAbstractPublication PagescpsweekConference Proceedingsconference-collections
research-article

Robust invariant sets generation for state-constrained perturbed polynomial systems

Published: 16 April 2019 Publication History

Abstract

In this paper we study the problem of computing robust invariant sets for state-constrained perturbed polynomial systems within the Hamilton-Jacobi reachability framework. A robust invariant set is a set of states such that every possible trajectory starting from it never violates the given state constraint, irrespective of the actual perturbation. The main contribution of this work is to describe the maximal robust invariant set as the zero level set of the unique Lipschitz-continuous viscosity solution to a Hamilton-Jacobi-Bellman (HJB) equation. The continuity and uniqueness property of the viscosity solution facilitates the use of existing numerical methods to solve the HJB equation for an appropriate number of state variables in order to obtain an approximation of the maximal robust invariant set. We furthermore propose a method based on semi-definite programming to synthesize robust invariant sets. Some illustrative examples demonstrate the performance of our methods.

References

[1]
A. A. Ahmadi and A. Majumdar. DSOS and SDSOS optimization: more tractable alternatives to sum of squares and semidefinite optimization. arXiv preprint arXiv:1706.02586, 2017.
[2]
J.-P. Aubin. Viability theory. Birkhauser Boston Inc., 1991.
[3]
J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre. Viability theory: new directions. Springer Science & Business Media, 2011.
[4]
S. Bansal, M. Chen, S. Herbert, and C. Tomlin. Hamilton-Jacobi reachability: A brief overview and recent advances. In CDC'17, pages 2242--2253, 2017.
[5]
M. Bardi and I. Capuzzo-Dolcettae. Optimal control and viscosity solutions of Hamilton-Jacobi-Bellman equations. Springer Science & Business Media, 1997.
[6]
G. Barles and B. Perthame. Exit time problems in optimal control and vanishing viscosity method. SIAM J. Control Optim., 26(5):1133--1148, 1988.
[7]
F. Blanchini and S. Miani. Set-theoretic methods in control. Springer, 2008.
[8]
O. Bokanowski, A. Desilles, and H. Zidani. "ROCHJ", a parallel d-dimensional C++ solver for Reachability and Optimal Control using Hamilton-Jacobi equations. https://uma.ensta-paristech.fr/soft/ROC-HJ.
[9]
O. Bokanowski, N. Forcadel, and H. Zidani. Reachability and minimal times for state constrained nonlinear problems without any controllability assumption. SIAM J. Control Optim., 48(7):4292--4316, 2010.
[10]
S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and control theory. SIAM, 1994.
[11]
F. Camilli, L. Grüne, and F. Wirth. A generalization of Zubov's method to perturbed systems. SIAM J. Control Optim., 40(2):496--515, 2001.
[12]
P. Cardaliaguet, M. Quincampoix, and P. Saint-Pierre. Set-valued numerical analysis for optimal control and differential games. In Stochastic and differential games, pages 177--247. Springer, 1999.
[13]
M. Falcone and R. Ferretti. Numerical methods for Hamilton-Jacobi type equations. In Handbook of Numerical Analysis, volume 17, pages 603--626. Elsevier, 2016.
[14]
I. J. Fialho and T. T. Georgiou. Worst case analysis of nonlinear systems. IEEE Trans. Automat. Contr., 44(6):1180--1196, 1999.
[15]
J. F. Fisac, M. Chen, C. J. Tomlin, and S. S. Sastry. Reach-avoid problems with time-varying dynamics, targets and constraints. In HSCC'15, pages 11--20. ACM, 2015.
[16]
H. Frankowska and S. Plaskacz. Semicontinuous solutions of Hamilton-Jacobi-Bellman equations with degenerate state constraints. J. Math. Anal. Appl., 251(2):818--838, 2000.
[17]
T. H. Gronwall. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Annals of Mathematics, pages 292--296, 1919.
[18]
L. Grüne and O. S. Serea. Differential games and zubov's method. SIAM J. Control Optim., 49(6):2349--2377, 2011.
[19]
L. Grüne and H. Zidani. Zubov's equation for state-constrained perturbed nonlinear systems. Math. Control Relaf. F., 5(1):55--71, 2015.
[20]
Z. W. Jarvis-Wloszek. Lyapunov based analysis and controller synthesis for polynomial systems using sum-of-squares optimization. PhD thesis, University of California, Berkeley, 2003.
[21]
E. C. Kerrigan. Robust constraint satisfaction: Invariant sets and predictive control. PhD thesis, Citeseer, 2001.
[22]
Y. Li and J. Liu. ROCS: A robustly complete control synthesis tool for nonlinear dynamical systems. In HSCC'18, pages 130--135. ACM, 2018.
[23]
J. Lofberg. YALMIP: A toolbox for modeling and optimization in matlab. In CACSD'04, pages 284--289. IEEE, 2004.
[24]
J. Lygeros. On reachability and minimum cost optimal control. Automatica, 40(6):917--927, 2004.
[25]
A. Majumdar, A. A. Ahmadi, and R. Tedrake. Control and verification of high-dimensional systems with DSOS and SDSOS programming. In CDC'14, pages 394--401. IEEE, 2014.
[26]
K. Margellos and J. Lygeros. Hamilton-Jacobi formulation for reach-avoid differential games. IEEE Trans. Automat. Contr., 56(8):1849--1861, 2011.
[27]
I. M. Mitchell. A toolbox of level set methods. UBC Department of Computer Science Technical Report TR-2007-11, 2007.
[28]
I. M. Mitchell, A. M. Bayen, and C. J. Tomlin. A time-dependent Hamilton-Jacobi formulation of reachable sets for continuous dynamic games. IEEE Trans. Automat. Contr., 50(7):947--957, 2005.
[29]
A. Mosek. The MOSEK optimization toolbox for matlab manual. Version 7.1, page 17, 2015.
[30]
S. V. Rakovic, E. C. Kerrigan, K. I. Kouramas, and D. Q. Mayne. Invariant approximations of the minimal robust positively invariant set. IEEE Trans. Automat. Contr., 50(3):406--410, 2005.
[31]
M. Rungger and M. Zamani. Scots: A tool for the synthesis of symbolic controllers. In HSCC'16, pages 99--104. ACM, 2016.
[32]
S. Sankaranarayanan. Automatic invariant generation for hybrid systems using ideal fixed points. In HSCC'10, pages 221--230. ACM, 2010.
[33]
M. A. B. Sassi and A. Girard. Controller synthesis for robust invariance of polynomial dynamical systems using linear programming. Syst. Control Lett., 61(4):506--512, 2012.
[34]
J. A. Sethian. Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, volume 3. Cambridge University Press, 1999.
[35]
A. Sogokon, K. Ghorbal, P. B. Jackson, and A. Platzer. A method for invariant generation for polynomial continuous systems. In VMCAI'16, pages 268--288. Springer, 2016.
[36]
H. M. Soner. Optimal control with state-space constraint. SIAM J. Control Optim., 24(6):1110--1122, 1986.
[37]
P. Soravia. Pursuit-evasion problems and viscosity solutions of isaacs equations. SIAM J. Control Optim., 31(3):604--623, 1993.
[38]
P. Soravia et al. Optimality principles and representation formulas for viscosity solutions of Hamilton-Jacobi equations. ii. equations of control problems with state constraints. Differ. Integral. Equ., 12(2):275--293, 1999.
[39]
U. Topcu, A. K. Packard, P. Seiler, and G. J. Balas. Robust region-of-attraction estimation. IEEE Trans. Automat. Contr., 55(1):137--142, 2010.
[40]
F. A. Valentine. A Lipschitz condition preserving extension for a vector function. Amer. J. Math., 67(1):83, 1945.
[41]
B. Xue, M. Fränzle, and N. Zhan. Under-approximating reach sets for polynomial continuous systems. In HSCC'18, pages 51--60. ACM, 2018.
[42]
S. Yu, C. Böhm, H. Chen, and F. Allgöwer. Robust model predictive control with disturbance invariant sets. In ACC'10, pages 6262--6267. IEEE, 2010.

Cited By

View all
  • (2024)Robust Invariance Conditions of Uncertain Linear Discrete Time Systems Based on Semidefinite Programming DualityMathematics10.3390/math1216251212:16(2512)Online publication date: 14-Aug-2024
  • (2024)Computing Robust Control Invariant Sets of Nonlinear Systems Using Polynomial Controller Synthesis2024 American Control Conference (ACC)10.23919/ACC60939.2024.10644939(4162-4169)Online publication date: 10-Jul-2024
  • (2024)PolyARBerNN: A Neural Network Guided Solver and Optimizer for Bounded Polynomial InequalitiesACM Transactions on Embedded Computing Systems10.1145/363297023:2(1-26)Online publication date: 24-Jan-2024
  • Show More Cited By

Index Terms

  1. Robust invariant sets generation for state-constrained perturbed polynomial systems

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    HSCC '19: Proceedings of the 22nd ACM International Conference on Hybrid Systems: Computation and Control
    April 2019
    299 pages
    ISBN:9781450362825
    DOI:10.1145/3302504
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 16 April 2019

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Hamilton-Jacobi-Bellman equations
    2. polynomial systems
    3. robust invariant sets
    4. semi-definite programs

    Qualifiers

    • Research-article

    Funding Sources

    • CAS Pioneer Hundred Talents Program
    • NSFC
    • Deutsche Forschungsgemeinschaft

    Conference

    HSCC '19
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 153 of 373 submissions, 41%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)18
    • Downloads (Last 6 weeks)4
    Reflects downloads up to 23 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Robust Invariance Conditions of Uncertain Linear Discrete Time Systems Based on Semidefinite Programming DualityMathematics10.3390/math1216251212:16(2512)Online publication date: 14-Aug-2024
    • (2024)Computing Robust Control Invariant Sets of Nonlinear Systems Using Polynomial Controller Synthesis2024 American Control Conference (ACC)10.23919/ACC60939.2024.10644939(4162-4169)Online publication date: 10-Jul-2024
    • (2024)PolyARBerNN: A Neural Network Guided Solver and Optimizer for Bounded Polynomial InequalitiesACM Transactions on Embedded Computing Systems10.1145/363297023:2(1-26)Online publication date: 24-Jan-2024
    • (2024)Scalable Computation of Robust Control Invariant Sets of Nonlinear SystemsIEEE Transactions on Automatic Control10.1109/TAC.2023.327530569:2(755-770)Online publication date: Feb-2024
    • (2023)A dimensionality reduction method for computing reachable tubes based on piecewise pseudo-time dependent Hamilton–Jacobi equationApplied Mathematics and Computation10.1016/j.amc.2022.127696441:COnline publication date: 15-Mar-2023
    • (2022)Coalitional Distributed Model Predictive Control Strategy for Vehicle Platooning ApplicationsSensors10.3390/s2203099722:3(997)Online publication date: 27-Jan-2022
    • (2022)Differential Games Based on Invariant Sets Generation2022 American Control Conference (ACC)10.23919/ACC53348.2022.9867496(1285-1292)Online publication date: 8-Jun-2022
    • (2022)Robust Invariant Sets Computation for Discrete-Time Perturbed Nonlinear SystemsIEEE Transactions on Automatic Control10.1109/TAC.2021.306331567:2(1053-1060)Online publication date: Feb-2022
    • (2021)Reference dependent invariant setsAutomatica (Journal of IFAC)10.1016/j.automatica.2021.109614129:COnline publication date: 1-Jul-2021
    • (2020)Safety Verification for Random Ordinary Differential EquationsIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems10.1109/TCAD.2020.301313539:11(4090-4101)Online publication date: Nov-2020
    • Show More Cited By

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media