Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Spectral coarsening of geometric operators

Published: 12 July 2019 Publication History

Abstract

We introduce a novel approach to measure the behavior of a geometric operator before and after coarsening. By comparing eigenvectors of the input operator and its coarsened counterpart, we can quantitatively and visually analyze how well the spectral properties of the operator are maintained. Using this measure, we show that standard mesh simplification and algebraic coarsening techniques fail to maintain spectral properties. In response, we introduce a novel approach for spectral coarsening. We show that it is possible to significantly reduce the sampling density of an operator derived from a 3D shape without affecting the low-frequency eigenvectors. By marrying techniques developed within the algebraic multigrid and the functional maps literatures, we successfully coarsen a variety of isotropic and anisotropic operators while maintaining sparsity and positive semi-definiteness. We demonstrate the utility of this approach for applications including operatorsensitive sampling, shape matching, and graph pooling for convolutional neural networks.

Supplementary Material

MP4 File (papers_180.mp4)

References

[1]
Martin S. Andersen, Joachim Dahl, and Lieven Vandenberghe. 2010. Implementation of nonsymmetric interior-point methods for linear optimization over sparse matrix cones. Mathematical Programming Computation 2, 3 (Dec 2010).
[2]
Mathieu Andreux, Emanuele Rodola, Mathieu Aubry, and Daniel Cremers. 2014. Anisotropic Laplace-Beltrami operators for shape analysis. In European Conference on Computer Vision. Springer, 299--312.
[3]
George B Arfken and Hans J Weber. 1999. Mathematical methods for physicists.
[4]
Mathieu Aubry, Ulrich Schlickewei, and Daniel Cremers. 2011. The wave kernel signature: A quantum mechanical approach to shape analysis. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International Conference on. IEEE, 1626--1633.
[5]
Mikhail Belkin, Jian Sun, and Yusu Wang. 2009. Constructing Laplace operator from point clouds in R d. In Proceedings of the twentieth annual ACM-SIAM symposium on Discrete algorithms. Society for Industrial and Applied Mathematics, 1031--1040.
[6]
William N Bell. 2008. Algebraic multigrid for discrete differential forms. (2008).
[7]
Gaurav Bharaj, David IW Levin, James Tompkin, Yun Fei, Hanspeter Pfister, Wojciech Matusik, and Changxi Zheng. 2015. Computational design of metallophone contact sounds. ACM Transactions on Graphics (TOG) 34, 6 (2015), 223.
[8]
Stephen Boyd and Lieven Vandenberghe. 2004. Convex optimization. Cambridge university press.
[9]
William L Briggs, Steve F McCormick, et al. 2000. A multigrid tutorial. Vol. 72. Siam.
[10]
Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. 2017. Geometric deep learning: going beyond euclidean data. IEEE Signal Processing Magazine 34, 4 (2017), 18--42.
[11]
Peter Burt and Edward Adelson. 1983. The Laplacian pyramid as a compact image code. IEEE Transactions on communications 31, 4 (1983), 532--540.
[12]
Desai Chen, David I. Levin, Wojciech Matusik, and Danny M. Kaufman. 2017. Dynamics-Aware Numerical Coarsening for Fabrication Design. ACM Trans. Graph. 34, 4 (2017).
[13]
Desai Chen, David I. W. Levin, Shinjiro Sueda, and Wojciech Matusik. 2015. Data-driven Finite Elements for Geometry and Material Design. ACM Trans. Graph. 34, 4 (2015).
[14]
Jiong Chen, Hujun Bao, Tianyu Wang, Mathieu Desbrun, and Jin Huang. 2018. Numerical Coarsening Using Discontinuous Shape Functions. ACM Trans. Graph. 37, 4 (2018).
[15]
Jie Chen and Ilya Safro. 2011. Algebraic distance on graphs. SIAM Journal on Scientific Computing 33, 6 (2011), 3468--3490.
[16]
Paolo Cignoni, Marco Callieri, Massimiliano Corsini, Matteo Dellepiane, Fabio Ganovelli, and Guido Ranzuglia. 2008. Meshlab: an open-source mesh processing tool. In Eurographics Italian chapter conference, Vol. 2008. 129--136.
[17]
Paolo Cignoni, Claudio Montani, and Roberto Scopigno. 1998. A comparison of mesh simplification algorithms. Computers & Graphics 22, 1 (1998), 37--54.
[18]
Gregory Cohen, Saeed Afshar, Jonathan Tapson, and André van Schaik. 2017. EMNIST: an extension of MNIST to handwritten letters. arXiv preprint arXiv:1702.05373 (2017).
[19]
David Cohen-Steiner, Pierre Alliez, and Mathieu Desbrun. 2004. Variational shape approximation. ACM Trans. on Graph. (2004).
[20]
Etienne Corman, Justin Solomon, Mirela Ben-Chen, Leonidas Guibas, and Maks Ovsjanikov. 2017. Functional characterization of intrinsic and extrinsic geometry. ACM Transactions on Graphics (TOG) 36, 2 (2017), 14.
[21]
Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in Neural Information Processing Systems. 3844--3852.
[22]
Mathieu Desbrun, Mark Meyer, Peter Schröder, and Alan H Barr. 1999. Implicit fairing of irregular meshes using diffusion and curvature flow. In Proceedings of the 26th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 317--324.
[23]
Timothy Dozat. 2016. Incorporating nesterov momentum into adam. (2016).
[24]
Matthew Fisher, Boris Springborn, Alexander I Bobenko, and Peter Schroder. 2006. An algorithm for the construction of intrinsic Delaunay triangulations with applications to digital geometry processing. In ACM SIGGRAPH 2006 Courses. ACM, 69--74.
[25]
Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric error metrics. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 209--216.
[26]
Michael Garland and Paul S Heckbert. 1998. Simplifying surfaces with color and texture using quadric error metrics. In Visualization'98. Proceedings. IEEE, 263--269.
[27]
Daniela Giorgi, Silvia Biasotti, and Laura Paraboschi. 2007. SHape REtrieval Contest 2007: Watertight Models Track. http://watertight.ge.imati.cnr.it/.
[28]
Igor Guskov, Andrei Khodakovsky, Peter Schröder, and Wim Sweldens. 2002. Hybrid meshes: multiresolution using regular and irregular refinement. In Proceedings of the eighteenth annual symposium on Computational geometry. ACM, 264--272.
[29]
Hugues Hoppe. 1996. Progressive meshes. In Proceedings of the 23rd annual conference on Computer graphics and interactive techniques. ACM, 99--108.
[30]
Hugues Hoppe. 1999. New quadric metric for simplifying meshes with appearance attributes. In Visualization'99. Proceedings. IEEE, 59--510.
[31]
Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1993. Mesh Optimization. In Proc. SIGGRAPH. 19--26.
[32]
Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral meshing in the wild. ACM Transactions on Graphics (TOG) 37, 4 (2018), 60.
[33]
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. http://libigl.github.io/libigl/.
[34]
Miao Jin, Junho Kim, Feng Luo, and Xianfeng Gu. 2008. Discrete surface Ricci flow. IEEE Transactions on Visualization and Computer Graphics 14, 5 (2008), 1030--1043.
[35]
Karsten Kahl and Matthias Rottmann. 2018. Least Angle Regression Coarsening in Bootstrap Algebraic Multigrid. arXiv preprint arXiv:1802.00595 (2018).
[36]
Lily Kharevych, Patrick Mullen, Houman Owhadi, and Mathieu Desbrun. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. on Graph. (2009).
[37]
Vladimir G Kim, Yaron Lipman, and Thomas Funkhouser. 2011. Blended intrinsic maps. In ACM Transactions on Graphics (TOG), Vol. 30. ACM, 79.
[38]
Rasmus Kyng and Sushant Sachdeva. 2016. Approximate gaussian elimination for laplacians-fast, sparse, and simple. In Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on. IEEE, 573--582.
[39]
Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278--2324.
[40]
Dingzeyu Li, Yun Fei, and Changxi Zheng. 2015. Interactive Acoustic Transfer Approximation for Modal Sound. ACM Trans. Graph. 35, 1 (2015).
[41]
Or Litany, Tal Remez, Emanuele Rodolà, Alexander M Bronstein, and Michael M Bronstein. 2017. Deep Functional Maps: Structured Prediction for Dense Shape Correspondence. In ICCV. 5660--5668.
[42]
Oren E Livne and Achi Brandt. 2012. Lean algebraic multigrid (LAMG): Fast graph Laplacian linear solver. SIAM Journal on Scientific Computing 34, 4 (2012), B499--B522.
[43]
Richard H MacNeal. 1949. The solution of partial differential equations by means of electrical networks. Ph.D. Dissertation. California Institute of Technology.
[44]
Thomas A Manteuffel, Luke N Olson, Jacob B Schroder, and Ben S Southworth. 2017. A Root-Node-Based Algebraic Multigrid Method. SIAM Journal on Scientific Computing 39, 5 (2017), S723--S756.
[45]
Ahmad Nasikun, Christopher Brandt, and Klaus Hildebrandt. 2018. Fast Approximation of Laplace-Beltrami Eigenproblems. In Computer Graphics Forum, Vol. 37. Wiley Online Library, 121--134.
[46]
Dorian Nogneng and Maks Ovsjanikov. 2017. Informative descriptor preservation via commutativity for shape matching. In Computer Graphics Forum, Vol. 36. Wiley Online Library, 259--267.
[47]
Luke N Olson, Jacob Schroder, and Raymond S Tuminaro. 2010. A new perspective on strength measures in algebraic multigrid. Numerical Linear Algebra with Applications 17, 4 (2010), 713--733.
[48]
Maks Ovsjanikov, Mirela Ben-Chen, Justin Solomon, Adrian Butscher, and Leonidas Guibas. 2012. Functional maps: a flexible representation of maps between shapes. ACM Transactions on Graphics (TOG) 31, 4 (2012), 30.
[49]
A Cengiz Öztireli, Marc Alexa, and Markus Gross. 2010. Spectral sampling of manifolds. In ACM Transactions on Graphics (TOG), Vol. 29. ACM, 168.
[50]
Gabriel Peyré and Stéphane Mallat. 2005. Surface compression with geometric bandelets. In ACM Transactions on Graphics (TOG), Vol. 24. ACM, 601--608.
[51]
Ulrich Pinkall and Konrad Polthier. 1993. Computing discrete minimal surfaces and their conjugates. Experimental mathematics 2, 1 (1993), 15--36.
[52]
Jovan Popović and Hugues Hoppe. 1997. Progressive simplicial complexes. In Proceedings of the 24th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 217--224.
[53]
Yixuan Qiu. 2018. spectra: C++ Library For Large Scale Eigenvalue Problems.
[54]
https://github.com/yixuan/spectra/.
[55]
John W Ruge and Klaus Stüben. 1987. Algebraic multigrid. In Multigrid methods. SIAM, 73--130.
[56]
Raif M Rustamov, Maks Ovsjanikov, Omri Azencot, Mirela Ben-Chen, Frédéric Chazal, and Leonidas Guibas. 2013. Map-based exploration of intrinsic shape differences and variability. ACM Transactions on Graphics (TOG) 32, 4 (2013), 72.
[57]
Peter Schroder. 1996. Wavelets in computer graphics. Proc. IEEE 84, 4 (1996), 615--625.
[58]
William J Schroeder, Jonathan A Zarge, and William E Lorensen. 1992. Decimation of triangle meshes. In ACM siggraph computer graphics, Vol. 26. ACM, 65--70.
[59]
Andrei Sharf, Thomas Lewiner, Gil Shklarski, Sivan Toledo, and Daniel Cohen-Or. 2007. Interactive topology-aware surface reconstruction. ACM Trans. on Graph. (2007).
[60]
Anja Struyf, Mia Hubert, and Peter Rousseeuw. 1997. Clustering in an Object-Oriented Environment. Journal of Statistical Software (1997).
[61]
Klaus Stuben. 2000. Algebraic multigrid (AMG): an introduction with applications. Multigrid (2000).
[62]
Yifan Sun and Lieven Vandenberghe. 2015. Decomposition methods for sparse matrix nearness problems. SIAM J. Matrix Anal. Appl. 36, 4 (2015), 1691--1717.
[63]
Rasmus Tamstorf, Toby Jones, and Stephen F McCormick. 2015. Smoothed aggregation multigrid for cloth simulation. ACM Trans. on Graph. (2015).
[64]
Lieven Vandenberghe and Martin S. Andersen. 2015. Chordal Graphs and Semidefinite Optimization. Found. Trends Optim. 1, 4 (2015).
[65]
Matthias Vestner, Zorah Lähner, Amit Boyarski, Or Litany, Ron Slossberg, Tal Remez, Emanuele Rodolà, Alexander M. Bronstein, Michael M. Bronstein, Ron Kimmel, and Daniel Cremers. 2017. Efficient Deformable Shape Correspondence via Kernel Matching. In 3DV.
[66]
Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms. arXiv:cs.LG/cs.LG/1708.07747
[67]
Jinchao Xu and Ludmil Zikatanov. 2017. Algebraic multigrid methods. Acta Numerica 26 (2017), 591--721.
[68]
Yang Zheng, Giovanni Fantuzzi, Antonis Papachristodoulou, Paul Goulart, and Andrew Wynn. 2017. Fast ADMM for semidefinite programs with chordal sparsity. In American Control Conference.
[69]
Qingnan Zhou and Alec Jacobson. 2016. Thingi10K: A Dataset of 10,000 3D-Printing Models. arXiv preprint arXiv:1605.04797 (2016).

Cited By

View all
  • (2024)A Partition Based Method for Spectrum-Preserving Mesh SimplificationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.334161030:10(6839-6850)Online publication date: Oct-2024
  • (2024)ReMatching: Low-Resolution Representations for Scalable Shape CorrespondenceComputer Vision – ECCV 202410.1007/978-3-031-72913-3_11(183-200)Online publication date: 2-Dec-2024
  • (2023)Differentiable Stripe Patterns for Inverse Design of Structured SurfacesACM Transactions on Graphics10.1145/359211442:4(1-14)Online publication date: 26-Jul-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 38, Issue 4
August 2019
1480 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3306346
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 12 July 2019
Published in TOG Volume 38, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. geometry processing
  2. numerical coarsening
  3. spectral geometry

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)31
  • Downloads (Last 6 weeks)8
Reflects downloads up to 22 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)A Partition Based Method for Spectrum-Preserving Mesh SimplificationIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2023.334161030:10(6839-6850)Online publication date: Oct-2024
  • (2024)ReMatching: Low-Resolution Representations for Scalable Shape CorrespondenceComputer Vision – ECCV 202410.1007/978-3-031-72913-3_11(183-200)Online publication date: 2-Dec-2024
  • (2023)Differentiable Stripe Patterns for Inverse Design of Structured SurfacesACM Transactions on Graphics10.1145/359211442:4(1-14)Online publication date: 26-Jul-2023
  • (2023)Spectral Coarsening with Hodge LaplaciansACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591544(1-11)Online publication date: 23-Jul-2023
  • (2023)Scalable and Efficient Functional Map Computations on Dense MeshesComputer Graphics Forum10.1111/cgf.1474642:2(89-101)Online publication date: 23-May-2023
  • (2023)TetCNN: Convolutional Neural Networks on Tetrahedral MeshesInformation Processing in Medical Imaging10.1007/978-3-031-34048-2_24(303-315)Online publication date: 8-Jun-2023
  • (2022)Nonlinear Compliant Modes for Large-deformation Analysis of Flexible StructuresACM Transactions on Graphics10.1145/356895242:2(1-11)Online publication date: 22-Nov-2022
  • (2022)Stability-Aware Simplification of Curve NetworksACM SIGGRAPH 2022 Conference Proceedings10.1145/3528233.3530711(1-9)Online publication date: 27-Jul-2022
  • (2022)The Hierarchical Subspace Iteration Method for Laplace–Beltrami EigenproblemsACM Transactions on Graphics10.1145/349520841:2(1-14)Online publication date: 4-Jan-2022
  • (2022)A Survey of Non‐Rigid 3D RegistrationComputer Graphics Forum10.1111/cgf.1450241:2(559-589)Online publication date: 24-May-2022
  • Show More Cited By

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media