Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
note

Placement and Routing for Tile-based Field-coupled Nanocomputing Circuits Is NP-complete (Research Note)

Published: 22 April 2019 Publication History

Abstract

Field-coupled Nanocomputing (FCN) technologies provide an alternative to conventional CMOS-based computation technologies and are characterized by intriguingly low-energy dissipation. Accordingly, their design received significant attention in the recent past. FCN circuit implementations like Quantum-dot Cellular Automata (QCA) or Nanomagnet Logic (NML) have already been built in labs and basic operations such as inverters, Majority, AND, OR, and so on, are already available. The design problem basically boils down to the question of how to place basic operations and route their connections so that the desired function results while, at the same time, further constraints (related to timing, clocking, path lengths, etc.) are satisfied. While several solutions for this problem have been proposed, interestingly no clear understanding about the complexity of the underlying task exists thus far. In this research note, we consider this problem and eventually prove that placement and routing for tile-based FCN circuits is NP-complete. By this, we provide a theoretical foundation for the further development of corresponding design methods.

References

[1]
N. G. Anderson and S. Bhanja. 2014. Field-coupled Nanocomputing: Paradigms, Progress, and Perspectives (1st ed.). Springer, New York.
[2]
Valentina Arima, Matteo Iurlo, et al. 2012. Toward quantum-dot cellular automata units: Thiolated-carbazole linked bisferrocenes. Nanoscale 4, 3 (2012), 813--823.
[3]
Therese C. Biedl. 1996. Improved orthogonal drawings of 3-graphs. In Proceedings of the CCCG. 295--299.
[4]
C. A. T. Campos, A. L. P. Marciano, O. P. V. Neto, and F. S. Torres. 2016. USE: A universal, scalable, and efficient clocking scheme for QCA. Trans. Comput.-Aided Design 35, 3 (2016), 513--517.
[5]
Moon Jung Chung. 1987. O(n<sup>2.5</sup>) time algorithms for the subgraph homeomorphism problem on trees. J. Algor. 8, 1 (1987), 106--112.
[6]
L. De Moura and N. Bjørner. 2008. Z3: An efficient SMT solver. In Proceedings of the TACAS/ETAPS. 4.
[7]
I. Eichwald, A. Bartel, J. Kiermaier, S. Breitkreutz, G. Csaba, D. Schmitt-Landsiedel, and M. Becherer. 2012. Nanomagnetic logic: Error-free, directed signal transmission by an inverter chain. IEEE Trans. Magn. 48, 11 (2012), 4332--4335.
[8]
E. Fazzion, O. L. Fonseca, J. A. M. Nacif, O. P. V. Neto, A. O. Fernandes, and D. S. Silva. 2014. A quantum-dot cellular automata processor design. In Proceedings of the SBCCI.
[9]
Steven Fortune, John Hopcroft, and James Wyllie. 1980. The directed subgraph homeomorphism problem. Theor. Comput. Sci. 10, 2 (1980), 111--121.
[10]
Michael R. Garey and David S. Johnson. 1979. Computers and Intractability—A Guide to the Theory of NP-completeness. W. H. Freeman.
[11]
D. Giri, G. Causapruno, and F. Riente. 2018. Parallel and serial computation in nanomagnet logic: An overview. Trans. Very Large Scale Integr. 26, 8 (2018), 1427--1437.
[12]
D. Giri, M. Vacca, G. Causapruno, M. Zamboni, and M. Graziano. 2016. Modeling, design, and analysis of MagnetoElastic NML circuits. IEEE Trans. Nanotechnol. 15, 6 (Nov. 2016), 977--985.
[13]
K. Hennessy and C. S. Lent. 2001. Clocking of molecular quantum-dot cellular automata. J. Vac. Sci. Technol. B 19, 5 (2001), 1752--1755.
[14]
J. Huang, M. Momenzadeh, L. Schiano, M. Ottavi, and F. Lombardi. 2005. Tile-based QCA design using majority-like logic primitives. J. Emerg. Technol. Comput. 1, 3 (2005), 163--185.
[15]
Taleana R. Huff, Hatem Labidi, et al. 2017. Atomic white-out: Enabling atomic circuitry through mechanically induced bonding of single hydrogen atoms to a silicon surface. ACS Nano 11, 9 (2017), 8636--8642.
[16]
Alon Itai, Christos H. Papadimitriou, and Jayme Luiz Szwarcfiter. 1982. Hamilton paths in grid graphs. SIAM J. Comput. 11, 4 (1982), 676--686.
[17]
M. Kianpour and R. Sabbaghi-Nadooshan. 2014. A novel quantum-dot cellular automata CLB of FPGA. J. Comput. Electron. 13, 3 (2014), 709--725.
[18]
Andrea S. LaPaugh and Ronald L. Rivest. 1980. The subgraph homeomorphism problem. J. Comput. Syst. Sci. (1980), 133--149.
[19]
C. S. Lent and P. D. Tougaw. 1997. A device architecture for computing with quantum dots. Proc. IEEE 85, 4 (1997), 541--557.
[20]
Andrzej Lingas and Martin Wahlen. 2009. An exact algorithm for subgraph homeomorphism. J. Discrete Algor. 7, 4 (2009), 464--468.
[21]
Jiří Matoušek and Robin Thomas. 1992. On the complexity of finding iso-and other morphisms for partial k-trees. Discrete Math. 108, 1--3 (1992), 343--364.
[22]
R. K. Nath, B. Sen, and B. K. Sikdar. 2017. Optimal synthesis of QCA logic circuit eliminating wire-crossings. IET-Circ. Dev. Syst. 11, 3 (2017), 201--208.
[23]
Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. 2002. Isabelle/HOL: A Proof Assistant for Higher-order Logic. Vol. 2283. Springer Science 8 Business Media.
[24]
S. Perri and P. Corsonello. 2012. New methodology for the design of efficient binary addition circuits in QCA. Trans. Nanotechnol. 11, 6 (2012), 1192--1200.
[25]
Wolfgang Porod, Gary H. Bernstein, György Csaba, Sharon X. Hu, Joseph Nahas, Michael T. Niemier, and Alexei Orlov. 2014. Nanomagnet Logic. Springer, Berlin, 21--32.
[26]
D. A. Reis, C. A. T. Campos, T. R. Soares, O. P. V. Neto, and F. S. Torres. 2016. A methodology for standard cell design for QCA. In Proceedings of the ISCAS.
[27]
Arman Roohi, Ronald F. DeMara, and Navid Khoshavi. 2015. Design and evaluation of an ultra-area-efficient fault-tolerant QCA full adder. Microelectron. J. 46, 6 (2015), 531--542.
[28]
S. Srivastava, S. Sarkar, and S. Bhanja. 2009. Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 1 (Jan. 2009), 116--127.
[29]
J. Timler and C. S. Lent. 2002. Power gain and dissipation in quantum-dot cellular automata. J. Appl. Phys. 91, 2 (2002), 823--831.
[30]
Frank Sill Torres, Marcel Walter, Robert Wille, Daniel Große, and Rolf Drechsler. 2018a. Synchronization of clocked field-coupled circuits. In Proceedings of the IEEE-NANO. 1--4.
[31]
Frank Sill Torres, Robert Wille, Philipp Niemann, and Rolf Drechsler. 2018b. An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Trans. Comput.-Aided Design 37, 12 (Dec. 2018), 3031--3041.
[32]
Frank Sill Torres, Robert Wille, Marcel Walter, Philipp Niemann, Daniel Große, and Rolf Drechsler. 2018c. Evaluating the impact of interconnections in quantum-dot cellular automata. In Proceedings of the DSD. 649--656.
[33]
A. Trindade, R. S. Ferreira, J. A. M. Nacif, D. Sales, and O. P. V. Neto. 2016. A placement and routing algorithm for quantum-dot cellular automata. In Proceedings of the SBCCI.
[34]
V. Vankamamidi, M. Ottavi, and F. Lombardi. 2008. Two-dimensional schemes for clocking/timing of QCA circuits. Trans. Comput.-Aided Design 27, 1 (2008), 34--44.
[35]
E. Varga, M. T. Niemier, G. Csaba, G. H. Bernstein, and W. Porod. 2013. Experimental realization of a nanomagnet full adder using slanted-edge magnets. IEEE Trans. Magn. 49, 7 (July 2013), 4452--4455.
[36]
Marcel Walter, Robert Wille, Daniel Große, Frank Sill Torres, and Rolf Drechsler. 2018. An exact method for design exploration of quantum-dot cellular automata. In Proceedings of the DATE. 503--508.
[37]
Marcel Walter, Robert Wille, Frank Sill Torres, Daniel Große, and Rolf Drechsler. 2019. Scalable design for field-coupled nanocomputing circuits. In Proceedings of the ASP-DAC.
[38]
Robert A. Wolkow, Lucian Livadaru, et al. 2014. Silicon Atomic Quantum Dots Enable Beyond-CMOS Electronics. Springer-Verlag, 33--58.

Cited By

View all
  • (2024)On-the-fly Defect-Aware Design of Circuits based on Silicon Dangling Bond Logic2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628962(30-35)Online publication date: 8-Jul-2024
  • (2024)A* is Born: Efficient and Scalable Physical Design for Field-coupled Nanocomputing2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628808(80-85)Online publication date: 8-Jul-2024
  • (2024)The Munich N anotech Toolkit (MNT)2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628747(454-459)Online publication date: 8-Jul-2024
  • Show More Cited By

Index Terms

  1. Placement and Routing for Tile-based Field-coupled Nanocomputing Circuits Is NP-complete (Research Note)

        Recommendations

        Comments

        Information & Contributors

        Information

        Published In

        cover image ACM Journal on Emerging Technologies in Computing Systems
        ACM Journal on Emerging Technologies in Computing Systems  Volume 15, Issue 3
        July 2019
        160 pages
        ISSN:1550-4832
        EISSN:1550-4840
        DOI:10.1145/3327966
        • Editor:
        • Yuan Xie
        Issue’s Table of Contents
        Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

        Publisher

        Association for Computing Machinery

        New York, NY, United States

        Journal Family

        Publication History

        Published: 22 April 2019
        Accepted: 01 February 2019
        Revised: 01 February 2019
        Received: 01 June 2018
        Published in JETC Volume 15, Issue 3

        Permissions

        Request permissions for this article.

        Check for updates

        Author Tags

        1. Emerging technology
        2. NP-complete
        3. field-coupled nanocomputing
        4. placement
        5. routing

        Qualifiers

        • Note
        • Research
        • Refereed

        Contributors

        Other Metrics

        Bibliometrics & Citations

        Bibliometrics

        Article Metrics

        • Downloads (Last 12 months)11
        • Downloads (Last 6 weeks)2
        Reflects downloads up to 09 Jan 2025

        Other Metrics

        Citations

        Cited By

        View all
        • (2024)On-the-fly Defect-Aware Design of Circuits based on Silicon Dangling Bond Logic2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628962(30-35)Online publication date: 8-Jul-2024
        • (2024)A* is Born: Efficient and Scalable Physical Design for Field-coupled Nanocomputing2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628808(80-85)Online publication date: 8-Jul-2024
        • (2024)The Munich N anotech Toolkit (MNT)2024 IEEE 24th International Conference on Nanotechnology (NANO)10.1109/NANO61778.2024.10628747(454-459)Online publication date: 8-Jul-2024
        • (2024)Thinking Outside the Clock: Physical Design for Field-coupled Nanocomputing with Deep Reinforcement Learning2024 25th International Symposium on Quality Electronic Design (ISQED)10.1109/ISQED60706.2024.10528711(1-8)Online publication date: 3-Apr-2024
        • (2023)Post-Layout Optimization for Field-coupled NanotechnologiesProceedings of the 18th ACM International Symposium on Nanoscale Architectures10.1145/3611315.3633247(1-6)Online publication date: 18-Dec-2023
        • (2023)Scalable Physical Design for Silicon Dangling Bond Logic: How a 45° Turn Prevents the Reinvention of the Wheel2023 IEEE 23rd International Conference on Nanotechnology (NANO)10.1109/NANO58406.2023.10231278(872-877)Online publication date: 2-Jul-2023
        • (2023)Versatile Signal Distribution Networks for Scalable Placement and Routing of Field-coupled Nanocomputing Technologies2023 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)10.1109/ISVLSI59464.2023.10238604(1-6)Online publication date: 20-Jun-2023
        • (2022)Hexagons are the bestagonsProceedings of the 59th ACM/IEEE Design Automation Conference10.1145/3489517.3530525(739-744)Online publication date: 23-Aug-2022
        • (2022)Field-Coupled Nanocomputing Placement and Routing With Genetic and A* AlgorithmsIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2022.319745069:11(4619-4631)Online publication date: Nov-2022
        • (2022)Design of efficient binary-coded decimal adder in QCA technology with a regular clocking schemeComputers and Electrical Engineering10.1016/j.compeleceng.2022.107999101:COnline publication date: 1-Jul-2022
        • Show More Cited By

        View Options

        Login options

        Full Access

        View options

        PDF

        View or Download as a PDF file.

        PDF

        eReader

        View online with eReader.

        eReader

        HTML Format

        View this article in HTML Format.

        HTML Format

        Media

        Figures

        Other

        Tables

        Share

        Share

        Share this Publication link

        Share on social media