Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3373376.3378517acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Open access

A Computational Temporal Logic for Superconducting Accelerators

Published: 13 March 2020 Publication History

Abstract

Superconducting logic offers the potential to perform computation at tremendous speeds and energy savings. However, a "semantic gap" lies between the level-driven logic that traditional hardware designs accept as a foundation and the pulse-driven logic that is naturally supported by the most compelling superconducting technologies. A pulse, unlike a level signal, will fire through a channel for only an instant. Arranging the network of superconducting components so that input pulses always arrive simultaneously to "logic gates'' to maintain the illusion of Boolean-only evaluation is a significant engineering hurdle. In this paper, we explore computing in a new and more native tongue for superconducting logic: time of arrival. Building on recent work in delay-based computations we show that superconducting logic can naturally compute directly over temporal relationships between pulse arrivals, that the computational relationships between those pulse arrivals can be formalized through a functional extension to a temporal predicate logic used in the verification community, and that the resulting architectures can operate asynchronously and describe real and useful computations. We verify our hypothesis through a combination of detailed analog circuit models, a formal analysis of our abstractions, and an evaluation in the context of several superconducting accelerators.

References

[1]
Y. Ando, R. Sato, M. Tanaka, K. Takagi, N. Takagi, and A. Fujimaki. 2016. Design and Demonstration of an 8-bit Bit-Serial RSFQ Microprocessor: CORE e4. IEEE Transactions on Applied Superconductivity, Vol. 26, 5 (Aug 2016), 1--5. https://doi.org/10.1109/TASC.2016.2565609
[2]
D. A. Buck. 1956. The Cryotron-A Superconductive Computer Component. Proceedings of the IRE, Vol. 44, 4 (April 1956), 482--493. https://doi.org/10.1109/JRPROC.1956.274927
[3]
Ruizhe Cai, Ao Ren, Olivia Chen, Ning Liu, Caiwen Ding, Xuehai Qian, Jie Han, Wenhui Luo, Nobuyuki Yoshikawa, and Yanzhi Wang. 2019. A Stochastic-computing Based Deep Learning Framework Using Adiabatic Quantum-flux-parametron Superconducting Technology. In Proceedings of the 46th International Symposium on Computer Architecture (ISCA '19). ACM, New York, NY, USA, 567--578. https://doi.org/10.1145/3307650.3322270
[4]
W. Chen, A. V. Rylyakov, V. Patel, J. E. Lukens, and K. K. Likharev. 1999. Rapid single flux quantum T-flip flop operating up to 770 GHz. IEEE Transactions on Applied Superconductivity, Vol. 9, 2 (June 1999), 3212--3215. https://doi.org/10.1109/77.783712
[5]
Alessandro Cimatti, Marco Roveri, and Daniel Sheridan. 2004. Bounded Verification of Past LTL. In Formal Methods in Computer-Aided Design, Alan J. Hu and Andrew K. Martin (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 245--259.
[6]
Z. J. Deng, N. Yoshikawa, S. R. Whiteley, and T. Van Duzer. 1997. Data-driven self-timed RSFQ digital integrated circuit and system. IEEE Transactions on Applied Superconductivity, Vol. 7, 2 (June 1997), 3634--3637. https://doi.org/10.1109/77.622205
[7]
M. Dorojevets, P. Bunyk, and D. Zinoviev. 2001. FLUX chip: design of a 20-GHz 16-bit ultrapipelined RSFQ processor prototype based on 1.75-/spl mu/m LTS technology. IEEE Transactions on Applied Superconductivity, Vol. 11, 1 (March 2001), 326--332. https://doi.org/10.1109/77.919349
[8]
Eby G. Friedman. 1997. High Performance Clock Distribution Networks .Springer US, Boston, MA, 1--4. https://doi.org/10.1007/978--1--4684--8440--3_1
[9]
Dov Gabbay. 1989. The declarative past and imperative future. In Temporal Logic in Specification, B. Banieqbal, H. Barringer, and A. Pnueli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 409--448.
[10]
Kris Gaj, Eby G. Friedman, and Marc J. Feldman. 1997. Timing of Multi-Gigahertz Rapid Single Flux Quantum Digital Circuits. Journal of VLSI signal processing systems for signal, image and video technology, Vol. 16, 2 (01 Jun 1997), 247--276. https://doi.org/10.1023/A:1007903527533
[11]
D. S. Holmes, A. M. Kadin, and M. W. Johnson. 2015. Superconducting Computing in Large-Scale Hybrid Systems. Computer, Vol. 48, 12 (Dec 2015), 34--42. https://doi.org/10.1109/MC.2015.375
[12]
D. S. Holmes, A. L. Ripple, and M. A. Manheimer. 2013. Energy-Efficient Superconducting Computing-Power Budgets and Requirements. IEEE Transactions on Applied Superconductivity, Vol. 23, 3 (June 2013), 1701610--1701610. https://doi.org/10.1109/TASC.2013.2244634
[13]
Whiteley Research Incorporated. 2019. WRspice reference manual . Technical Report. http://www.wrcad.com/manual/wrsmanual.pdf
[14]
H. Kamerlingh Onnes. 1911. The resistance of pure mercury at helium temperatures. Commun. Phys. Lab. Univ. Leiden, b, Vol. 120 (1911).
[15]
Hans Kamp. 1968. Tense Logic and the Theory of Linear Order . Ph.D. Dissertation. Ucla.
[16]
N. K. Katam, J. Kawa, and M. Pedram. 2019. Challenges and the status of superconducting single flux quantum technology. In 2019 Design, Automation Test in Europe Conference Exhibition (DATE) . 1781--1787. https://doi.org/10.23919/DATE.2019.8747356
[17]
Konstantin K. Likharev. 2012. Superconductor digital electronics. Physica C: Superconductivity and its Applications, Vol. 482 (2012), 6 -- 18. https://doi.org/10.1016/j.physc.2012.05.016 2011 Centennial superconductivity conference - EUCAS-ISEC-ICMC.
[18]
K. K. Likharev and V. K. Semenov. 1991. RSFQ logic/memory family: a new Josephson-junction technology for sub-terahertz-clock-frequency digital systems. IEEE Transactions on Applied Superconductivity, Vol. 1, 1 (March 1991), 3--28. https://doi.org/10.1109/77.80745
[19]
Advait Madhavan, Timothy Sherwood, and Dmitri Strukov. 2014. Race Logic: A Hardware Acceleration for Dynamic Programming Algorithms. SIGARCH Comput. Archit. News, Vol. 42, 3 (June 2014), 517--528. https://doi.org/10.1145/2678373.2665747
[20]
A. Madhavan, T. Sherwood, and D. Strukov. 2017. A 4-mm2 180-nm-CMOS 15-Giga-cell-updates-per-second DNA sequence alignment engine based on asynchronous race conditions. In 2017 IEEE Custom Integrated Circuits Conference (CICC). 1--4. https://doi.org/10.1109/CICC.2017.7993630
[21]
R. Manohar. 2015. Comparing Stochastic and Deterministic Computing. IEEE Computer Architecture Letters, Vol. 14, 2 (July 2015), 119--122. https://doi.org/10.1109/LCA.2015.2412553
[22]
O. A. Mukhanov, S. V. Rylov, V. K. Semonov, and S. V. Vyshenskii. 1989. RSFQ logic arithmetic. IEEE Transactions on Magnetics, Vol. 25, 2 (March 1989), 857--860. https://doi.org/10.1109/20.92421
[23]
M. H. Najafi, D. J. Lilja, M. D. Riedel, and K. Bazargan. 2018. Low-Cost Sorting Network Circuits Using Unary Processing. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 26, 8 (Aug 2018), 1471--1480. https://doi.org/10.1109/TVLSI.2018.2822300
[24]
P. Russer. 1971. General energy relations for Josephson junctions. Proc. IEEE, Vol. 59, 2 (Feb 1971), 282--283. https://doi.org/10.1109/PROC.1971.8133
[25]
James E. Smith. 2018. Space-Time Algebra: A Model for Neocortical Computation. In Proceedings of the 45th Annual International Symposium on Computer Architecture (ISCA '18). IEEE Press, 289--300. https://doi.org/10.1109/ISCA.2018.00033
[26]
James E. Smith. 2019. (Newtonian) Space-Time Algebra. arxiv: cs.LO/2001.04242
[27]
Igor I Soloviev, Nikolay V Klenov, Sergey V Bakurskiy, Mikhail Yu Kupriyanov, Alexander L Gudkov, and Anatoli S Sidorenko. 2017. Beyond Moore's technologies: operation principles of a superconductor alternative. Beilstein Journal of Nanotechnology, Vol. 8 (Dec 2017), 2689--2710. https://doi.org/10.3762/bjnano.8.269
[28]
M. Tanaka, R. Sato, Y. Hatanaka, and A. Fujimaki. 2016. High-Density Shift-Register-Based Rapid Single-Flux-Quantum Memory System for Bit-Serial Microprocessors. IEEE Transactions on Applied Superconductivity, Vol. 26, 5 (Aug 2016), 1--5. https://doi.org/10.1109/TASC.2016.2555905
[29]
G. Tang, P. Qu, X. Ye, and D. Fan. 2018. Logic Design of a 16-bit Bit-Slice Arithmetic Logic Unit for 32-/64-bit RSFQ Microprocessors. IEEE Transactions on Applied Superconductivity, Vol. 28, 4 (June 2018), 1--5. https://doi.org/10.1109/TASC.2018.2799994
[30]
G. Tang, K. Takata, M. Tanaka, A. Fujimaki, K. Takagi, and N. Takagi. 2016. 4-bit Bit-Slice Arithmetic Logic Unit for 32-bit RSFQ Microprocessors. IEEE Transactions on Applied Superconductivity, Vol. 26, 1 (Jan 2016), 1--6. https://doi.org/10.1109/TASC.2015.2507125
[31]
Swamit S. Tannu, Poulami Das, Michael L. Lewis, Robert Krick, Douglas M. Carmean, and Moinuddin K. Qureshi. 2019. A Case for Superconducting Accelerators. In Proceedings of the 16th ACM International Conference on Computing Frontiers (CF '19). ACM, New York, NY, USA, 67--75. https://doi.org/10.1145/3310273.3321561
[32]
Sergey K Tolpygo. 2016. Superconductor digital electronics: Scalability and energy efficiency issues. Low Temperature Physics, Vol. 42, 5 (2016), 361--379.
[33]
Georgios Tzimpragos, Advait Madhavan, Dilip Vasudevan, Dmitri Strukov, and Timothy Sherwood. 2019. Boosted Race Trees for Low Energy Classification. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS '19). Association for Computing Machinery, New York, NY, USA, 215--228. https://doi.org/10.1145/3297858.3304036
[34]
Y. Yamanashi, M. Tanaka, A. Akimoto, H. Park, Y. Kamiya, N. Irie, N. Yoshikawa, A. Fujimaki, H. Terai, and Y. Hashimoto. 2007. Design and Implementation of a Pipelined Bit-Serial SFQ Microprocessor, $rm CORE1β$. IEEE Transactions on Applied Superconductivity, Vol. 17, 2 (June 2007), 474--477. https://doi.org/10.1109/TASC.2007.898606

Cited By

View all
  • (2025)Variable-Logic Processor on Paired Wires for Artificial Intelligence AccelerationApplications of Advanced Electromagnetics10.1007/978-3-031-73892-0_6(201-228)Online publication date: 1-Jan-2025
  • (2024)Toward Practical Superconducting Accelerators for Machine Learning Using U-SFQACM Journal on Emerging Technologies in Computing Systems10.1145/365307320:2(1-22)Online publication date: 9-Apr-2024
  • (2024)Unleashing the Power of T1-cells in SFQ Arithmetic CircuitsProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3658267(1-6)Online publication date: 23-Jun-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS '20: Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems
March 2020
1412 pages
ISBN:9781450371025
DOI:10.1145/3373376
© 2020 Association for Computing Machinery. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the United States Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 13 March 2020

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. race logic
  2. superconducting logic
  3. temporal logic

Qualifiers

  • Research-article

Funding Sources

Conference

ASPLOS '20

Acceptance Rates

Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)462
  • Downloads (Last 6 weeks)38
Reflects downloads up to 17 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2025)Variable-Logic Processor on Paired Wires for Artificial Intelligence AccelerationApplications of Advanced Electromagnetics10.1007/978-3-031-73892-0_6(201-228)Online publication date: 1-Jan-2025
  • (2024)Toward Practical Superconducting Accelerators for Machine Learning Using U-SFQACM Journal on Emerging Technologies in Computing Systems10.1145/365307320:2(1-22)Online publication date: 9-Apr-2024
  • (2024)Unleashing the Power of T1-cells in SFQ Arithmetic CircuitsProceedings of the 61st ACM/IEEE Design Automation Conference10.1145/3649329.3658267(1-6)Online publication date: 23-Jun-2024
  • (2024)Efficient Verification of Multi-Agent Systems Through Parallel2024 IEEE 24th International Conference on Software Quality, Reliability and Security (QRS)10.1109/QRS62785.2024.00079(745-756)Online publication date: 1-Jul-2024
  • (2024)Superconductive Electronics: A 25-Year Review [Feature]IEEE Circuits and Systems Magazine10.1109/MCAS.2024.337649224:2(16-33)Online publication date: Oct-2025
  • (2024)Inter-Temperature Bandwidth Reduction in Cryogenic QAOA MachinesIEEE Computer Architecture Letters10.1109/LCA.2023.332270023:1(9-12)Online publication date: Jan-2024
  • (2024)High area efficiency binary neural processing elements with time-domain signals using SFQ circuitsSuperconductor Science and Technology10.1088/1361-6668/ad2fd937:4(045014)Online publication date: 14-Mar-2024
  • (2024)An energy-efficient 32-bit bit-parallel superconducting SFQ specialized processorSuperconductivity10.1016/j.supcon.2024.10009910(100099)Online publication date: Jun-2024
  • (2023)Superconducting Shuttle-Flux Shift Register for Race Logic and Its ApplicationsIEEE Transactions on Circuits and Systems I: Regular Papers10.1109/TCSI.2022.321002370:1(17-28)Online publication date: Jan-2023
  • (2023)Superconducting Hyperdimensional Associative Memory Circuit for Scalable Machine LearningIEEE Transactions on Applied Superconductivity10.1109/TASC.2023.327195133:5(1-14)Online publication date: Aug-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media