Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Public Access

Accelerating Scientific Computing in the Post-Moore’s Era

Published: 29 March 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Novel uses of graphical processing units for accelerated computation revolutionized the field of high-performance scientific computing by providing specialized workflows tailored to algorithmic requirements. As the era of Moore’s law draws to a close, many new non–von Neumann processors are emerging as potential computational accelerators, including those based on the principles of neuromorphic computing, tensor algebra, and quantum information. While development of these new processors is continuing to mature, the potential impact on accelerated computing is anticipated to be profound. We discuss how different processing models can advance computing in key scientific paradigms: machine learning and constraint satisfaction. Significantly, each of these new processor types utilizes a fundamentally different model of computation, and this raises questions about how to best use such processors in the design and implementation of applications. While many processors are being developed with a specific domain target, the ubiquity of spin-glass models and neural networks provides an avenue for multi-functional applications. This also hints at the infrastructure needed to integrate next-generation processing units into future high-performance computing systems.

    References

    [1]
    David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. 1985. A learning algorithm for Boltzmann machines. Cog. Sci. 9, 1 (1985), 147--169.
    [2]
    Masaharu Adachi and Kazuyuki Aihara. 1997. Associative dynamics in a chaotic neural network. Neural Netw. 10, 1 (1997), 83--98.
    [3]
    James B. Aimone, William Severa, and Craig M. Vineyard. 2019. Composing neural algorithms with Fugu. arXiv preprint arXiv:1905.12130 (2019).
    [4]
    Tameem Albash and Daniel A. Lidar. 2018. Adiabatic quantum computation. Rev. Mod. Phys. 90 (Jan. 2018), 015002. Issue 1.
    [5]
    Tameem Albash and Daniel A. Lidar. 2018. Demonstration of a scaling advantage for a quantum annealer over simulated annealing. Phys. Rev. X 8 (July 2018), 031016. Issue 3.
    [6]
    Tameem Albash, Victor Martin-Mayor, and Itay Hen. 2017. Temperature scaling law for quantum annealing optimizers. Phys. Rev. Lett. 119, 11 (2017), 110502.
    [7]
    Behrooz Kamary Aliabadi, Claude Berrou, Vincent Gripon, and Xiaoran Jiang. 2014. Storing sparse messages in networks of neural cliques. IEEE Transactions on Neural Networks and Learning Systems 25, 5 (2014), 980--989.
    [8]
    Shun-Ichi Amari. 1989. Characteristics of sparsely encoded associative memory. Neural Networks 2, 6 (1989), 451--457.
    [9]
    Daniel J. Amit, Hanoch Gutfreund, and Haim Sompolinsky. 1985. Storing infinite numbers of patterns in a spin-glass model of neural networks. Phys. Rev. Lett. 55, 14 (1985), 1530.
    [10]
    Dario Amodei, Sundaram Ananthanarayanan, Rishita Anubhai, Jingliang Bai, Eric Battenberg, Carl Case, Jared Casper, Bryan Catanzaro, Qiang Cheng, Guoliang Chen, Jie Chen, Jingdong Chen, Zhijie Chen, Mike Chrzanowski, Adam Coates, Greg Diamos, Ke Ding, Niandong Du, Erich Elsen, Jesse Engel, Weiwei Fang, Linxi Fan, Christopher Fougner, Liang Gao, Caixia Gong, Awni Hannun, Tony Han, Lappi Johannes, Bing Jiang, Cai Ju, Billy Jun, Patrick LeGresley, Libby Lin, Junjie Liu, Yang Liu, Weigao Li, Xiangang Li, Dongpeng Ma, Sharan Narang, Andrew Ng, Sherjil Ozair, Yiping Peng, Ryan Prenger, Sheng Qian, Zongfeng Quan, Jonathan Raiman, Vinay Rao, Sanjeev Satheesh, David Seetapun, Shubho Sengupta, Kavya Srinet, Anuroop Sriram, Haiyuan Tang, Liliang Tang, Chong Wang, Jidong Wang, Kaifu Wang, Yi Wang, Zhijian Wang, Zhiqian Wang, Shuang Wu, Likai Wei, Bo Xiao, Wen Xie, Yan Xie, Dani Yogatama, Bin Yuan, Jun Zhan, and Zhenyao Zhu. 2016. Deep speech 2 : End-to-end speech recognition in English and Mandarin. In Proceedings of the 33rd International Conference on Machine Learning), Maria Florina Balcan and Kilian Q. Weinberger (Eds.), Vol. 48. PMLR, New York, New York, 173--182. Retrieved from http://proceedings.mlr.press/v48/amodei16.html.
    [11]
    Maliheh Aramon, Gili Rosenberg, Elisabetta Valiante, Toshiyuki Miyazawa, Hirotaka Tamura, and Helmut Katzgrabeer. 2019. Physics-inspired optimization for quadratic unconstrained problems using a digital annealer. Front. Phys. 7 (2019), 48.
    [12]
    John V. Arthur, Paul A. Merolla, Filipp Akopyan, Rodrigo Alvarez, Andrew Cassidy, Shyamal Chandra, Steven K. Esser, Nabil Imam, William Risk, Daniel B. D. Rubin, et al. 2012. Building block of a programmable neuromorphic substrate: A digital neurosynaptic core. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN’12). IEEE, 1--8.
    [13]
    Demian A. Battaglia, Giuseppe E. Santoro, and Erio Tosatti. 2005. Optimization by quantum annealing: Lessons from hard satisfiability problems. Phys. Rev. E 71 (June 2005), 066707. Issue 6.
    [14]
    Irwan Bello, Hieu Pham, Quoc V. Le, Mohammad Norouzi, and Samy Bengio. 2016. Neural combinatorial optimization with reinforcement learning. arXiv preprint arXiv:1611.09940 (2016).
    [15]
    Marcello Benedetti, Delfina Garcia-Pintos, Oscar Perdomo, Vicente Leyton-Ortega, Yunseong Nam, and Alejandro Perdomo-Ortiz. 2019. A generative modeling approach for benchmarking and training shallow quantum circuits. npj Quant. Inf. 5, 1 (2019), 45.
    [16]
    Marcello Benedetti, Edward Grant, Leonard Wossnig, and Simone Severini. 2019. Adversarial quantum circuit learning for pure state approximation. New J. Phys. 21, 4 (2019), 043023.
    [17]
    Marcello Benedetti, John Realpe-Gómez, and Alejandro Perdomo-Ortiz. 2018. Quantum-assisted Helmholtz machines: A quantum--classical deep learning framework for industrial datasets in near-term devices. Quant. Sci. Technol. 3, 3 (2018), 034007.
    [18]
    V. Bergholm, J. Izaac, M. Schuld, C. Gogolin, and N. Killoran. 2018. PennyLane: Automatic differentiation of hybrid quantum-classical computations. ArXiv e-prints (Nov. 2018). arxiv:quant-ph/1811.04968
    [19]
    Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, et al. 2017. Probing many-body dynamics on a 51-atom quantum simulator. Nature 551, 7682 (2017), 579.
    [20]
    Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. 2017. Quantum machine learning. Nature 549, 7671 (2017), 195.
    [21]
    Marcelo Blatt, Shai Wiseman, and Eytan Domany. 1996. Superparamagnetic clustering of data. Phys. Rev. Lett. 76 (Apr. 1996), 3251--3254. Issue 18.
    [22]
    Jason W. Bohland and Ali A. Minai. 2001. Efficient associative memory using small-world architecture. Neurocomputing 38 (2001), 489--496.
    [23]
    Sander M. Bohte, Joost N. Kok, and Han La Poutre. 2002. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48, 1 (2002), 17--37.
    [24]
    Tomas Boothby, Andrew D. King, and Aidan Roy. 2016. Fast clique minor generation in Chimera qubit connectivity graphs. Quant. Inf. Proc. 15, 1 (2016), 495--508.
    [25]
    J. Boyd. 2018. Silicon chip delivers quantum speeds. IEEE Spectrum 55, 7 (July 2018), 10--11.
    [26]
    Sergey Bravyi, David Gosset, and Robert Koenig. 2018. Quantum advantage with shallow circuits. Science 362, 6412 (2018), 308--311.
    [27]
    Keith A. Britt and Travis S. Humble. 2017. High-performance computing with quantum processing units. ACM J. Emerg. Technol. Comput. Syst. 13, 3 (2017), 39.
    [28]
    Keith A Britt and Travis S Humble. 2017. High-performance computing with quantum processing units. ACM J. Emerg. Technol. Comput. Syst. 13, 3 (2017), 39.
    [29]
    K. A. Britt, F. A. Mohiyaddin, and T. S. Humble. 2017. Quantum accelerators for high-performance computing systems. In Proceedings of the IEEE International Conference on Rebooting Computing (ICRC’17). 1--7.
    [30]
    Colin D. Bruzewicz, John Chiaverini, Robert McConnell, and Jeremy M. Sage. 2019. Trapped-ion quantum computing: Progress and challenges. Appl. Phys. Rev. 6, 2 (2019), 021314.
    [31]
    Harry Buhrman, Christoph Durr, Mark Heiligman, Peter Hoyer, Frédéric Magniez, Miklos Santha, and Ronald De Wolf. 2001. Quantum algorithms for element distinctness. In Proceedings of the 16th IEEE Conference on Computational Complexity. IEEE, 131--137.
    [32]
    Harald Burgsteiner, Mark Kröll, Alexander Leopold, and Gerald Steinbauer. 2007. Movement prediction from real-world images using a liquid state machine. Appl. Intell. 26, 2 (2007), 99--109.
    [33]
    Jeremie Cabessa and Hava T. Siegelmann. 2014. The super-Turing computational power of plastic recurrent neural networks. Int. J. Neural Syst. 24, 8 (2014), 1450029.
    [34]
    Jun Cai, William G. Macready, and Aidan Roy. 2014. A practical heuristic for finding graph minors. arXiv preprint arXiv:1406.2741 (2014).
    [35]
    Andrea Calimera, Enrico Macii, and Massimo Poncino. 2013. The human brain project and neuromorphic computing. Funct. Neurol. 28, 3 (2013), 191.
    [36]
    J. Carballo, W. J. Chan, P. A. Gargini, A. B. Kahng, and S. Nath. 2014. ITRS 2.0: Toward a re-framing of the semiconductor technology roadmap. In Proceedings of the IEEE 32nd International Conference on Computer Design (ICCD’14). 139--146.
    [37]
    Andrew S. Cassidy, Paul Merolla, John V. Arthur, Steve K. Esser, Bryan Jackson, Rodrigo Alvarez-Icaza, Pallab Datta, Jun Sawada, Theodore M. Wong, Vitaly Feldman, et al. 2013. Cognitive computing building block: A versatile and efficient digital neuron model for neurosynaptic cores. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’13). IEEE, 1--10.
    [38]
    Gangotree Chakma, Md Musabbir Adnan, Austin R. Wyer, Ryan Weiss, Catherine D. Schuman, and Garrett S. Rose. 2018. Memristive mixed-signal neuromorphic systems: Energy-efficient learning at the circuit-level. IEEE J. Emerg. Select. Topics Circ. Syst. 8, 1 (2018), 125--136.
    [39]
    Chia Cheng Chang, Arjun Gambhir, Travis S. Humble, and Shigetoshi Sota. 2019. Quantum annealing for systems of polynomial equations. Sci. Rep. 9, 1 (2019), 10258.
    [40]
    Vicky Choi. 2008. Minor-embedding in adiabatic quantum computation: I. The parameter setting problem. Quant. Inf. Proc. 7, 5 (2008), 193--209.
    [41]
    Vicky Choi. 2011. Minor-embedding in adiabatic quantum computation: II. Minor-universal graph design. Quant. Inf. Proc. 10, 3 (2011), 343--353.
    [42]
    William R. Clements, Jelmer J. Renema, Y. Henry Wen, Helen M. Chrzanowski, W. Steven Kolthammer, and Ian A. Walmsley. 2017. Gaussian optical Ising machines. Phys. Rev. A 96, 4 (Oct. 2017).
    [43]
    Thomas M. Conte, Erik P. DeBenedictis, Paolo A. Gargini, and Elie Track. 2017. Rebooting computing: The road ahead. Computer 50, 1 (2017), 20--29.
    [44]
    Nigel Crook, Wee Jin Goh, and Mohammad Hawarat. 2007. Pattern recall in networks of chaotic neurons. BioSystems 87, 2--3 (2007), 267--274.
    [45]
    George Cybenko. 1989. Approximation by superpositions of a sigmoidal function. Math. Contr. Signals Syst. 2, 4 (1989), 303--314.
    [46]
    D-WAVE. 2018. D-WAVE Publications. Retrieved from http://www.dwavesys.com/resources/publications.
    [47]
    E. D. Dahl. 2013. Programming with D-Wave: Map Coloring Problem. Technical Report. D-Wave Systems. Retrieved from https://www.dwavesys.com/resources/publications.
    [48]
    Pierre-Luc Dallaire-Demers and Nathan Killoran. 2018. Quantum generative adversarial networks. Phys. Rev. A 98 (July 2018), 012324. Issue 1.
    [49]
    Srinjoy Das, Bruno Umbria Pedroni, Paul Merolla, John Arthur, Andrew S. Cassidy, Bryan L. Jackson, Dharmendra Modha, Gert Cauwenberghs, and Ken Kreutz-Delgado. 2015. Gibbs sampling with low-power spiking digital neurons. In Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS’15). IEEE, 2704--2707.
    [50]
    Mike Davies, Narayan Srinivasa, Tsung-Han Lin, Gautham Chinya, Yongqiang Cao, Sri Harsha Choday, Georgios Dimou, Prasad Joshi, Nabil Imam, Shweta Jain, et al. 2018. Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 1 (2018), 82--99.
    [51]
    Andrew P. Davison, Daniel Brüderle, Jochen M. Eppler, Jens Kremkow, Eilif Muller, Dejan Pecevski, Laurent Perrinet, and Pierre Yger. 2009. PyNN: A common interface for neuronal network simulators. Front. Neuroinf. 2 (2009), 11.
    [52]
    Ricardo de Azambuja, Frederico B. Klein, Martin F. Stoelen, Samantha V. Adams, and Angelo Cangelosi. 2016. Graceful degradation under noise on brain inspired robot controllers. In Proceedings of the International Conference on Neural Information Processing. Springer, 195--204.
    [53]
    João Eliakin Mota de Oliveira and Marcos G. Quiles. 2014. Community detection in complex networks using coupled Kuramoto oscillators. In Proceedings of the 14th International Conference on Computational Science and Its Applications (ICCSA’14). IEEE, 85--90.
    [54]
    Shantanu Debnath, Norbert M. Linke, Caroline Figgatt, Kevin A. Landsman, Kevin Wright, and Christopher Monroe. 2016. Demonstration of a small programmable quantum computer with atomic qubits. Nature 536, 7614 (2016), 63.
    [55]
    C. L. Degen, F. Reinhard, and P. Cappellaro. 2017. Quantum sensing. Rev. Mod. Phys. 89, 3 (2017), 035002.
    [56]
    Vasil S. Denchev, Sergio Boixo, Sergei V. Isakov, Nan Ding, Ryan Babbush, Vadim Smelyanskiy, John Martinis, and Hartmut Neven. 2016. What is the computational value of finite-range tunneling? Phys. Rev. X 6, 3 (2016), 031015.
    [57]
    N. G. Dickson, M. W. Johnson, M. H. Amin, R. Harris, F. Altomare, A. J. Berkley, P. Bunyk, J. Cai, E. M. Chapple, P. Chavez, F. Cioata, T. Cirip, P. deBuen, M. Drew-Brook, C. Enderud, S. Gildert, F. Hamze, J. P. Hilton, E. Hoskinson, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Lanting, T. Mahon, R. Neufeld, T. Oh, I. Perminov, C. Petroff, A. Przybysz, C. Rich, P. Spear, A. Tcaciuc, M. C. Thom, E. Tolkacheva, S. Uchaikin, J. Wang, A. B. Wilson, Z. Merali, and G. Rose. 2013. Thermally assisted quantum annealing of a 16-qubit problem. Nat. Commun. 4 (21 05 2013), 1903. Retrieved from http://dx.doi.org/10.1038/ncomms2920.
    [58]
    Peter U. Diehl, Guido Zarrella, Andrew Cassidy, Bruno U. Pedroni, and Emre Neftci. 2016. Conversion of artificial recurrent neural networks to spiking neural networks for low-power neuromorphic hardware. In Proceedings of the IEEE International Conference on Rebooting Computing (ICRC’16). IEEE, 1--8.
    [59]
    Adam Douglass, Andrew D. King, and Jack Raymond. 2015. Constructing SAT filters with a quantum annealer. In Proceedings of the International Conference on Theory and Applications of Satisfiability Testing. Springer, 104--120.
    [60]
    Vedran Dunjko and Hans J. Briegel. 2018. Machine learning 8 artificial intelligence in the quantum domain: A review of recent progress. Rep. Prog. Phys. 81, 7 (2018), 074001.
    [61]
    Suguru Endo, Simon C. Benjamin, and Ying Li. 2018. Practical quantum error mitigation for near-future applications. Phys. Rev. X 8, 3 (2018), 031027.
    [62]
    Steve K. Esser, Alexander Andreopoulos, Rathinakumar Appuswamy, Pallab Datta, Davis Barch, Arnon Amir, John Arthur, Andrew Cassidy, Myron Flickner, Paul Merolla, et al. 2013. Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’13). IEEE, 1--10.
    [63]
    Steve K. Esser, Rathinakumar Appuswamy, Paul Merolla, John V. Arthur, and Dharmendra S. Modha. 2015. Backpropagation for energy-efficient neuromorphic computing. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1117--1125.
    [64]
    Steven K. Esser, Paul A. Merolla, John V. Arthur, Andrew S. Cassidy, Rathinakumar Appuswamy, Alexander Andreopoulos, David J. Berg, Jeffrey L. McKinstry, Timothy Melano, Davis R. Barch, et al. 2016. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Nat. Acad. Sci. 113, 41 (2016), 201604850.
    [65]
    Zhe Fan, Feng Qiu, Arie Kaufman, and Suzanne Yoakum-Stover. 2004. GPU cluster for high performance computing. In Proceedings of the ACM/IEEE Supercomputing Conference. IEEE, 47--47.
    [66]
    Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. 2014. A quantum approximate optimization algorithm. arXiv preprint arXiv:1411.4028 (2014).
    [67]
    Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda. 2001. A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292, 5516 (2001), 472--475.
    [68]
    Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Hartmut Neven. 2017. Quantum algorithms for fixed qubit architectures. arXiv preprint arXiv:1703.06199 (2017).
    [69]
    Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. 2000. Quantum computation by adiabatic evolution. arXiv preprint quant-ph/0001106 (2000).
    [70]
    Edward Farhi and Aram W. Harrow. 2016. Quantum supremacy through the quantum approximate optimization algorithm. arXiv preprint arXiv:1602.07674 (2016).
    [71]
    Edward Farhi and Hartmut Neven. 2018. Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002 (2018).
    [72]
    Ronald A. Fisher. 1936. The use of multiple measurements in taxonomic problems. Ann. Eug. 7, 2 (1936), 179--188.
    [73]
    Gabriel Andrés Fonseca Guerra and Steve B. Furber. 2017. Using stochastic spiking neural networks on SpiNNaker to solve constraint satisfaction problems. Front. Neurosci. 11 (2017), 714.
    [74]
    Santo Fortunato. 2010. Community detection in graphs. Phys. Rep. 486, 3 (2010), 75--174.
    [75]
    Keisuke Fujii and Kohei Nakajima. 2017. Harnessing disordered-ensemble quantum dynamics for machine learning. Phys. Rev. Appl. 8, 2 (2017), 024030.
    [76]
    Fujitsu. 2018. Fujitsu Quantum-inspired Computing Digital Annealer. Retrieved from http://www.fujitsu.com/global/digitalannealer/.
    [77]
    Steve B. Furber, Francesco Galluppi, Steve Temple, and Luis A. Plana. 2014. The SpiNNaker project. Proc. IEEE 102, 5 (2014), 652--665.
    [78]
    François Le Gall, Harumichi Nishimura, and Ansis Rosmanis. 2018. Quantum advantage for the LOCAL model in distributed computing. arXiv preprint arXiv:1810.10838 (2018).
    [79]
    Sanjib Ghosh, Andrzej Opala, Michał Matuszewski, Tomasz Paterek, and Timothy C. H. Liew. 2019. Quantum reservoir processing. npj Quant. Inf. 5, 1 (2019), 35.
    [80]
    András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. 2019. Optimizing quantum optimization algorithms via faster quantum gradient computation. In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 1425--1444.
    [81]
    D. Golomb, N. Rubin, and Haim Sompolinsky. 1990. Willshaw model: Associative memory with sparse coding and low firing rates. Phys. Rev. A 41, 4 (1990), 1843.
    [82]
    Timothy D. Goodrich, Blair D. Sullivan, and Travis S. Humble. 2018. Optimizing adiabatic quantum program compilation using a graph-theoretic framework. Quant. Inf. Proc. 17, 5 (2018), 118.
    [83]
    Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. 2018. Hierarchical quantum classifiers. npj Quant. Inf. 4, 1 (2018), 65.
    [84]
    Edward Grant, Leonard Wossnig, Mateusz Ostaszewski, and Marcello Benedetti. 2019. An initialization strategy for addressing barren plateaus in parametrized quantum circuits. arXiv preprint arXiv:1903.05076 (2019).
    [85]
    Vincent Gripon and Claude Berrou. 2011. Sparse neural networks with large learning diversity. IEEE Trans. Neural Netw. 22, 7 (2011), 1087--1096.
    [86]
    Lov K. Grover. 1996. A fast quantum mechanical algorithm for database search. In Proceedings of the 28th ACM Symposium on Theory of Computing. ACM, 212--219.
    [87]
    Ryan Hamerly, Takahiro Inagaki, Peter L. McMahon, Davide Venturelli, Alireza Marandi, Tatsuhiro Onodera, Edwin Ng, Carsten Langrock, Kensuke Inaba, Toshimori Honjo, Koji Enbutsu, Takeshi Umeki, Ryoichi Kasahara, Shoko Utsunomiya, Satoshi Kako, Ken ichi Kawarabayashi, Robert L. Byer, Martin M. Fejer, Hideo Mabuchi, Dirk Englund, Eleanor Rieffel, Hiroki Takesue, and Yoshihisa Yamamoto. 2019. Experimental investigation of performance differences between Coherent Ising Machines and a quantum annealer. Science Advances 5, 5 (2019).
    [88]
    Kathleen E. Hamilton, Eugene F. Dumitrescu, and Raphael C. Pooser. 2019. Generative model benchmarks for superconducting qubits. Phys. Rev. A 99, 6 (2019), 062323.
    [89]
    Kathleen E. Hamilton and Travis S. Humble. 2017. Identifying the minor set cover of dense connected bipartite graphs via random matching edge sets. Quant. Inf. Proc. 16, 4 (2017), 94.
    [90]
    Kathleen E. Hamilton and Travis S. Humble. 2018. Spiking spin-glass models for label propagation and community detection. arXiv preprint arXiv:1801.03571 (2018).
    [91]
    Kathleen E. Hamilton, Neena Imam, and Travis S. Humble. 2017. Community detection with spiking neural networks for neuromorphic hardware. In Proceedings of the Neuromorphic Computing Symposium. ACM, 9.
    [92]
    Kathleen E. Hamilton, Neena Imam, and Travis S. Humble. 2018. Sparse hardware embedding of spiking neuron systems for community detection. J. Emerg. Technol. Comput. Syst. 14, 4, Article 40 (Nov. 2018), 13 pages.
    [93]
    Kathleen E. Hamilton, Catherine D. Schuman, Steven R. Young, Neena Imam, and Travis S. Humble. 2018. Neural networks and graph algorithms with next-generation processors. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW’18). IEEE, 1194--1203.
    [94]
    Yoshitaka Haribara, Shoko Utsunomiya, and Yoshihisa Yamamoto. 2016. Computational principle and performance evaluation of coherent Ising machine based on degenerate optical parametric oscillator network. Entropy 18, 4 (Apr. 2016), 151.
    [95]
    R. Harris, Y. Sato, A. J. Berkley, M. Reis, F. Altomare, M. H. Amin, K. Boothby, P. Bunyk, C. Deng, C. Enderud, et al. 2018. Phase transitions in a programmable quantum spin glass simulator. Science 361, 6398 (2018), 162--165.
    [96]
    Vojtěch Havlíček, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. 2019. Supervised learning with quantum-enhanced feature spaces. Nature 567, 7747 (2019), 209.
    [97]
    Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2015. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision. 1026--1034.
    [98]
    Itay Hen and Federico M. Spedalieri. 2016. Quantum annealing for constrained optimization. Phys. Rev. Appl. 5, 3 (2016), 034007.
    [99]
    Greg Henry, Ping Tak Peter Tang, and Alexander Heinecke. 2019. Leveraging the bfloat16 artificial intelligence datatype for higher-precision computations. CoRR abs/1904.06376 (2019).
    [100]
    John Hertz, Anders Krogh, and Richard G. Palmer. 1991. Introduction to the Theory of Neural Computation. Santa Fe Institute Studies in the Sciences of Complexity, Vol. 1. Addison-Wesley.
    [101]
    Christopher J. Hillar and Lek-Heng Lim. 2013. Most tensor problems are NP-hard. J. ACM 60, 6, Article 45 (Nov. 2013), 39 pages.
    [102]
    Geoffrey E. Hinton. 2002. Training products of experts by minimizing contrastive divergence. Neural Computat. 14, 8 (2002), 1771--1800.
    [103]
    Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural Computat. 18, 7 (2006), 1527--1554.
    [104]
    Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long short-term memory. Neural Computat. 9, 8 (1997), 1735--1780.
    [105]
    John J. Hopfield. 1982. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79, 8 (1982), 2554--2558.
    [106]
    John J. Hopfield. 1984. Neurons with graded response have collective computational properties like those of two-state neurons. Proc. Nat. Acad. Sci. 81, 10 (1984), 3088--3092.
    [107]
    John J. Hopfield and David W. Tank. 1985. Neural computation of decisions in optimization problems. Biol. Cyber. 52, 3 (1985), 141--152.
    [108]
    Kurt Hornik, Maxwell Stinchcombe, and Halbert White. 1989. Multilayer feedforward networks are universal approximators. Neural Netw. 2, 5 (1989), 359--366.
    [109]
    Dandan Hu, Peter Ronhovde, and Zohar Nussinov. 2012. Phase transitions in random Potts systems and the community detection problem: Spin-glass type and dynamic perspectives. Philos. Mag. 92, 4 (2012), 406--445.
    [110]
    Gary B. Huang, Honglak Lee, and Erik Learned-Miller. 2012. Learning hierarchical representations for face verification with convolutional deep belief networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR’12). IEEE, 2518--2525.
    [111]
    Travis S. Humble, Alex J. McCaskey, Ryan S. Bennink, Jay Jay Billings, E. F. D’Azevedo, Blair D. Sullivan, Christine F. Klymko, and Hadayat Seddiqi. 2014. An integrated programming and development environment for adiabatic quantum optimization. Computat. Sci. Disc. 7, 1 (2014), 015006.
    [112]
    Travis S. Humble, Alexander J. McCaskey, Jonathan Schrock, Hadayat Seddiqi, Keith A. Britt, and Neena Imam. 2016. Performance models for split-execution computing systems. In Proceedings of the IEEE International Parallel and Distributed Processing Symposium Workshops. IEEE, 545--554.
    [113]
    Travis S. Humble, Ronald J. Sadlier, and Keith A. Britt. 2018. Simulated execution of hybrid quantum computing systems. In Proceedings of the Quantum Information Science, Sensing, and Computation X, Vol. 10660. International Society for Optics and Photonics, 1066002.
    [114]
    Travis S. Humble, Himanshu Thapliyal, Edgard Munoz-Coreas, Fahd A. Mohiyaddin, and Ryan S. Bennink. 2019. Quantum computing circuits and devices. IEEE Des. Test 36, 3 (2019), 69--94.
    [115]
    IBM. 2018. IBM Q-Experience. Retrieved from http://www.research.ibm.com/ibm-q/.
    [116]
    IBM. 2018. Qiskit Aqua. Retrieved from https://qiskit.org/aqua.
    [117]
    T. Inagaki, Y. Haribara, K. Igarashi, T. Sonobe, S. Tamate, T. Honjo, A. Marandi, P. L. McMahon, T. Umeki, K. Enbutsu, O. Tadanaga, H. Takenouchi, K. Aihara, K. I. Kawarabayashi, K. Inoue, S. Utsunomiya, and H. Takesue. 2016. A coherent Ising machine for 2000-node optimization problems. Science 354, 6312 (Oct. 2016), 603--606.
    [118]
    Taisuke Izumi and François Le Gall. 2017. Triangle finding and listing in CONGEST networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM, 381--389.
    [119]
    Shuxian Jiang, Keith A. Britt, Alexander J. McCaskey, Travis S. Humble, and Sabre Kais. 2018. Quantum annealing for prime factorization. Sci. Rep. 8, 1 (2018), 17667.
    [120]
    M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose. 2011. Quantum annealing with manufactured spins. Nature 473, 7346 (12 05 2011), 194--198. Retrieved from http://dx.doi.org/10.1038/nature10012.
    [121]
    Zeno Jonke, Stefan Habenschuss, and Wolfgang Maass. 2016. Solving constraint satisfaction problems with networks of spiking neurons. Front. Neurosci. 10 (2016), 118.
    [122]
    Steven Jordan. 2018. Quantum Algorithm Zoo. Retrieved from https://math.nist.gov/quantum/zoo/.
    [123]
    Stephen P. Jordan. 2005. Fast quantum algorithm for numerical gradient estimation. Phys. Rev. Lett. 95, 5 (2005), 050501.
    [124]
    N. Jouppi, C. Young, N. Patil, and D. Patterson. 2018. Motivation for and evaluation of the first tensor processing unit. IEEE Micro 38, 3 (May 2018), 10--19.
    [125]
    Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal, Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle, Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox, and Doe Hyun Yoon. 2017. In-datacenter performance analysis of a tensor processing unit. In Proceedings of the 44th International Symposium on Computer Architecture (ISCA’17). ACM, New York, NY, 1--12.
    [126]
    Abhinav Kandala, Antonio Mezzacapo, Kristan Temme, Maika Takita, Markus Brink, Jerry M. Chow, and Jay M. Gambetta. 2017. Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets. Nature 549, 7671 (2017), 242.
    [127]
    Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gambetta. 2019. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 7749 (2019), 491.
    [128]
    Pentti Kanerva. 1988. Sparse Distributed Memory. The MIT Press.
    [129]
    Nikola Kasabov, Kshitij Dhoble, Nuttapod Nuntalid, and Giacomo Indiveri. 2013. Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. Neural Netw. 41 (2013), 188--201.
    [130]
    Helmut G. Katzgraber, Firas Hamze, and Ruben S. Andrist. 2014. Glassy chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines. Phys. Rev. X 4 (Apr. 2014), 021008. Issue 2.
    [131]
    J. Kelly, Z. Chen, B. Chiaro, B. Foxen, J. Martinis, and Google Quantum Hardware Team. 2019. Operating and characterizing of a 72 superconducting qubit processor “Bristlecone”: Part 1. In APS Meet. Abstr. Article A42.002, A42.002 pages.
    [132]
    Volodymyr V. Kindratenko, Jeremy J. Enos, Guochun Shi, Michael T. Showerman, Galen W. Arnold, John E. Stone, James C. Phillips, and Wen-mei Hwu. 2009. GPU clusters for high-performance computing. In Proceedings of the IEEE International Conference on Cluster Computing and Workshops (CLUSTER’09). IEEE, 1--8.
    [133]
    Andrew D. King, William Bernoudy, James King, Andrew J. Berkley, and Trevor Lanting. [n.d.]. Emulating the coherent Ising machine with a mean-field algorithm. arXiv:quant-ph/1806.08422v1.
    [134]
    Andrew D. King, Juan Carrasquilla, Jack Raymond, Isil Ozfidan, Evgeny Andriyash, Andrew Berkley, Mauricio Reis, Trevor Lanting, Richard Harris, Fabio Altomare, et al. 2018. Observation of topological phenomena in a programmable lattice of 1,800 qubits. Nature 560, 7719 (2018), 456.
    [135]
    Andrew D. King, Trevor Lanting, and Richard Harris. 2015. Performance of a quantum annealer on range-limited constraint satisfaction problems. arXiv preprint arXiv:1502.02098 (2015).
    [136]
    James King, Sheir Yarkoni, Jack Raymond, Isil Ozfidan, Andrew D. King, Mayssam Mohammadi Nevisi, Jeremy P. Hilton, and Catherine C. McGeoch. 2017. Quantum annealing amid local ruggedness and global frustration. arXiv preprint arXiv:1701.04579 (2017).
    [137]
    Scott Kirkpatrick, C. Daniel Gelatt, and Mario P. Vecchi. 1983. Optimization by simulated annealing. Science 220, 4598 (1983), 671--680.
    [138]
    Christine Klymko, Blair D. Sullivan, and Travis S. Humble. 2014. Adiabatic quantum programming: Minor embedding with hard faults. Quant. Inf. Proc. 13, 3 (2014), 709--729.
    [139]
    Bart Kosko. 1988. Bidirectional associative memories. IEEE Trans. Syst. Man Cyber. 18, 1 (1988), 49--60.
    [140]
    Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. 2019. A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6, 2 (2019), 021318.
    [141]
    Mario Krenn, Mehul Malik, Thomas Scheidl, Rupert Ursin, and Anton Zeilinger. 2016. Quantum communication with photons. In Optics in Our Time. Springer, 455--482.
    [142]
    Dhireesha Kudithipudi, Qutaiba Saleh, Cory Merkel, James Thesing, and Bryant Wysocki. 2015. Design and analysis of a neuromemristive reservoir computing architecture for biosignal processing. Front. Neurosci. 9 (2015).
    [143]
    Manjari S. Kulkarni and Christof Teuscher. 2012. Memristor-based reservoir computing. In Proceedings of the IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH’12). IEEE, 226--232.
    [144]
    Vipin Kumar. 1992. Algorithms for constraint-satisfaction problems: A survey. AI Mag. 13, 1 (1992), 32.
    [145]
    Christopher R. Laumann, Roderich Moessner, Antonello Scardicchio, and S. L. Sondhi. 2015. Quantum annealing: The fastest route to quantum computation? Europ. Phys. J. Spec. Top. 224, 1 (2015), 75--88.
    [146]
    François Le Gall and Frédéric Magniez. 2018. Sublinear-time quantum computation of the diameter in CONGEST networks. In Proceedings of the ACM Symposium on Principles of Distributed Computing. ACM, 337--346.
    [147]
    Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436--444.
    [148]
    Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278--2324.
    [149]
    D.-L. Lee. 2006. Improvements of complex-valued Hopfield associative memory by using generalized projection rules. IEEE Trans. Neural Netw. 17, 5 (2006), 1341--1347.
    [150]
    Honglak Lee, Roger Grosse, Rajesh Ranganath, and Andrew Y. Ng. 2009. Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In Proceedings of the 26th International Conference on Machine Learning. ACM, 609--616.
    [151]
    Jure Leskovec, Kevin J. Lang, and Michael Mahoney. 2010. Empirical comparison of algorithms for network community detection. In Proceedings of the 19th International Conference on World Wide Web. ACM, 631--640.
    [152]
    Ying Li and Simon C. Benjamin. 2017. Efficient variational quantum simulator incorporating active error minimization. Phys. Rev. X 7, 2 (2017), 021050.
    [153]
    Chit-Kwan Lin, Andreas Wild, Gautham Chinya, Mike Davies, Narayan Srinivasa, Dan Lavery, and Hong Wang. 2018. Programming spiking neural networks on Intel Loihi. Computer 51, 3 (2018).
    [154]
    Norbert M. Linke, Dmitri Maslov, Martin Roetteler, Shantanu Debnath, Caroline Figgatt, Kevin A. Landsman, Kenneth Wright, and Christopher Monroe. 2017. Experimental comparison of two quantum computing architectures. Proc. Nat. Acad. Sci. (2017), 201618020.
    [155]
    Jin-Guo Liu and Lei Wang. 2018. Differentiable learning of quantum circuit born machines. Phys. Rev. A 98, 6 (2018), 062324.
    [156]
    Seth Lloyd and Christian Weedbrook. 2018. Quantum generative adversarial learning. Phys. Rev. Lett. 121 (July 2018), 040502. Issue 4.
    [157]
    Andrew Lucas. 2014. Ising formulations of many NP problems. Front. Phys. 2 (2014), 5.
    [158]
    Wolfgang Maass. 1997. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 10, 9 (1997), 1659--1671.
    [159]
    Alan K. Mackworth and Eugene C. Freuder. 1985. The complexity of some polynomial network consistency algorithms for constraint satisfaction problems. Artif. Intelligence 25, 1 (1985), 65--74.
    [160]
    Alireza Marandi, Zhe Wang, Kenta Takata, Robert L. Byer, and Yoshihisa Yamamoto. 2014. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 12 (Oct. 2014), 937--942.
    [161]
    Margaret Martonosi and Martin Roetteler. 2019. Next steps in quantum computing: Computer science’s role. arXiv preprint arXiv:1903.10541 (2019).
    [162]
    A. J. McCaskey, E. F. Dumitrescu, D. Liakh, M. Chen, W. Feng, and T. S. Humble. 2018. A language and hardware independent approach to quantum--classical computing. SoftwareX 7 (2018), 245--254.
    [163]
    Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. 2018. Barren plateaus in quantum neural network training landscapes. Nat. Commun. 9, 1 (2018), 4812.
    [164]
    Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. 2016. The theory of variational hybrid quantum-classical algorithms. New J. Phys. 18, 2 (2016), 023023.
    [165]
    Robert J. McEliece, Edward C. Posner, Eugene R. Rodemich, and Santosh S. Venkatesh. 1987. The capacity of the Hopfield associative memory. IEEE Trans. Inf. Theor. 33, 4 (1987), 461--482.
    [166]
    Peter L. McMahon, Alireza Marandi, Yoshitaka Haribara, Ryan Hamerly, Carsten Langrock, Shuhei Tamate, Takahiro Inagaki, Hiroki Takesue, Shoko Utsunomiya, Kazuyuki Aihara, Robert L. Byer, M. M. Fejer, Hideo Mabuchi, and Yoshihisa Yamamoto. 2016. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 6312 (Oct. 2016), 614--617.
    [167]
    Paul A. Merolla, John V. Arthur, Rodrigo Alvarez-Icaza, Andrew S. Cassidy, Jun Sawada, Filipp Akopyan, Bryan L. Jackson, Nabil Imam, Chen Guo, Yutaka Nakamura, et al. 2014. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345, 6197 (2014), 668--673.
    [168]
    K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. 2018. Quantum circuit learning. Phys. Rev. A 98 (Sept. 2018), 032309. Issue 3.
    [169]
    Abdel-rahman Mohamed, Tara N. Sainath, George Dahl, Bhuvana Ramabhadran, Geoffrey E. Hinton, and Michael A. Picheny. 2011. Deep belief networks using discriminative features for phone recognition. In Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’11). IEEE, 5060--5063.
    [170]
    N. Moll, P. Barkoutsos, L. S. Bishop, J. M. Chow, A. Cross, D. J. Egger, S. Filipp, A. Fuhrer, J. M. Gambetta, M. Ganzhorn, A. Kandala, A. Mezzacapo, P. Müller, W. Riess, G. Salis, J. Smolin, I. Tavernelli, and K. Temme. 2018. Quantum optimization using variational algorithms on near-term quantum devices. Quant. Sci. Technol. 3, 3 (July 2018), 030503. arxiv:quant-ph/1710.01022
    [171]
    Ashley Montanaro. 2016. Quantum algorithms: An overview. npj Quant. Inf. 2 (2016), 15023.
    [172]
    C. Moore and S. Mertens. 2011. The Nature of Computation. OUP Oxford. Retrieved from https://books.google.com/books?id=5M8le2uAIC8C.
    [173]
    Andrea Morello. 2018. What would you do with 1000 qubits? Quant. Sci. Technol. 3, 3 (2018), 030201. Retrieved from http://stacks.iop.org/2058-9565/3/i=3/a=030201.
    [174]
    Dominic J. Moylett, Noah Linden, and Ashley Montanaro. 2017. Quantum speedup of the traveling-salesman problem for bounded-degree graphs. Phys. Rev. A 95 (Mar. 2017), 032323. Issue 3.
    [175]
    Joseph S. Najem, Graham J. Taylor, Ryan J. Weiss, Md Sakib Hasan, Garrett Rose, Catherine D. Schuman, Alex Belianinov, C. Patrick Collier, and Stephen A. Sarles. 2018. Memristive ion channel-doped biomembranes as synaptic mimics. ACS Nano 12, 5 (2018).
    [176]
    Thomas Natschläger, Wolfgang Maass, and Henry Markram. 2002. The “liquid computer”: A novel strategy for real-time computing on time series. Spec. Issue Found. Inf. Proc. of TELEMATIK 8, LNMC-ARTICLE-2002-005 (2002), 39--43.
    [177]
    Emre O. Neftci, Charles Augustine, Somnath Paul, and Georgios Detorakis. 2017. Event-driven random back-propagation: Enabling neuromorphic deep learning machines. Front. Neurosci. 11 (2017), 324.
    [178]
    Nengo. 2018. The Nengo Neural Simulator. Retrieved from https://www.nengo.ai/.
    [179]
    Florian Neukart, Gabriele Compostella, Christian Seidel, David Von Dollen, Sheir Yarkoni, and Bob Parney. 2017. Optimizing traffic flow using quantum annealing and classical machine learning. arXiv preprint arXiv:1708.01625 (2017).
    [180]
    Hartmut Neven, Geordie Rose, and William G. Macready. 2008. Image recognition with an adiabatic quantum computer I. Mapping to quadratic unconstrained binary optimization. arXiv preprint arXiv:0804.4457 (2008).
    [181]
    N. T. T. Nguyen, A. E. Larson, and G. T. Kenyon. 2017. Generating sparse representations using quantum annealing: Comparison to classical algorithms. In Proceedings of the IEEE International Conference on Rebooting Computing (ICRC’17). 1--6.
    [182]
    Michael A. Nielsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information. Cambridge University Press.
    [183]
    M. A. Novotny, Q. L. Hobl, J. S. Hall, and K. Michielsen. 2016. Spanning tree calculations on d-Wave 2 machines. In Journal of Physics: Conference Series, Vol. 681. IOP Publishing, 012005.
    [184]
    Thomas R. Osborn. 1990. Fast Teaching of Boltzmann Machines with Local Inhibition. Springer Netherlands, Dordrecht, 785--785.
    [185]
    Peter J. J. O’Malley, Ryan Babbush, Ian D. Kivlichan, Jonathan Romero, Jarrod R. McClean, Rami Barends, Julian Kelly, Pedram Roushan, Andrew Tranter, Nan Ding, et al. 2016. Scalable quantum simulation of molecular energies. Phys. Rev. X 6, 3 (2016), 031007.
    [186]
    Eustace Painkras, Luis A. Plana, Jim Garside, Steve Temple, Francesco Galluppi, Cameron Patterson, David R. Lester, Andrew D. Brown, and Steve B. Furber. 2013. SpiNNaker: A 1-W 18-core system-on-chip for massively-parallel neural network simulation. IEEE J. Solid-State Circ. 48, 8 (2013), 1943--1953.
    [187]
    Scott Pakin and Steven P. Reinhardt. 2018. A survey of programming tools for D-wave quantum-annealing processors. In Proceedings of the International Conference on High Performance Computing. Springer, 103--122.
    [188]
    Ojas Parekh, Jeremy Wendt, Luke Shulenburger, Andrew Landahl, Jonathan Moussa, and John Aidun. 2016. Benchmarking adiabatic quantum optimization for complex network analysis. arXiv preprint arXiv:1604.00319 (2016).
    [189]
    N. G. Pavlidis, O. K. Tasoulis, Vassilis P. Plagianakos, G. Nikiforidis, and M. N. Vrahatis. 2005. Spiking neural network training using evolutionary algorithms. In Proceedings of the IEEE International Joint Conference on Neural Networks (IJCNN’05), Vol. 4. IEEE, 2190--2194.
    [190]
    Bruno U. Pedroni, Srinjoy Das, John V. Arthur, Paul A. Merolla, Bryan L. Jackson, Dharmendra S. Modha, Kenneth Kreutz-Delgado, and Gert Cauwenberghs. 2016. Mapping generative models onto a network of digital spiking neurons. IEEE Trans. Biomed. Circ. Syst. 10, 4 (2016), 837--854.
    [191]
    Alejandro Perdomo-Ortiz, Marcello Benedetti, John Realpe-Gómez, and Rupak Biswas. 2018. Opportunities and challenges for quantum-assisted machine learning in near-term quantum computers. Quant. Sci. Technol. 3, 3 (2018), 030502.
    [192]
    Alejandro Perdomo-Ortiz, Alexander Feldman, Asier Ozaeta, Sergei V. Isakov, Zheng Zhu, Bryan O’Gorman, Helmut G. Katzgraber, Alexander Diedrich, Hartmut Neven, Johan de Kleer, Brad Lackey, and Rupak Biswas. 2019. Readiness of quantum optimization machines for industrial applications. Phys. Rev. Appl. 12 (July 2019), 014004. Issue 1.
    [193]
    Yuriy V. Pershin and Massimiliano Di Ventra. 2010. Experimental demonstration of associative memory with memristive neural networks. Neural Netw. 23, 7 (2010), 881--886.
    [194]
    Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. 2014. A variational eigenvalue solver on a photonic quantum processor. Nat. Commun. 5 (2014), 4213.
    [195]
    James S. Plank, Garrett S. Rose, Mark E. Dean, Catherine D. Schuman, and Nathaniel C. Cady. 2017. A unified hardware/software co-design framework for neuromorphic computing devices and applications. In Proceedings of the IEEE International Conference on Rebooting Computing (ICRC’17). IEEE, 1--8.
    [196]
    Filip Jan Ponulak and John J. Hopfield. 2013. Rapid, parallel path planning by propagating wavefronts of spiking neural activity. Front. Computat. Neurosci. 7 (2013), 98.
    [197]
    Thomas E. Potok, Catherine D. Schuman, Steven R. Young, Robert M. Patton, Federico Spedalieri, Jeremy Liu, Ke-Thia Yao, Garrett Rose, and Gangotree Chakma. 2016. A study of complex deep learning networks on high performance, neuromorphic, and quantum computers. In Proceedings of the Workshop on Machine Learning in HPC Environments (MLHPC’16). IEEE, 47--55.
    [198]
    John Preskill. 2018. Quantum computing in the NISQ era and beyond. arXiv preprint arXiv:1801.00862 (2018).
    [199]
    Mirko Prezioso, Farnood Merrikh-Bayat, B. D. Hoskins, G. C. Adam, Konstantin K. Likharev, and Dmitri B. Strukov. 2015. Training and operation of an integrated neuromorphic network based on metal-oxide memristors. Nature 521, 7550 (2015), 61.
    [200]
    PsiQuantum. 2019. PsiQ. Retrieved from http://psiquantum.com/.
    [201]
    Marcos G. Quiles, Liang Zhao, Fabricio A. Breve, and Anderson Rocha. 2010. Label propagation through neuronal synchrony. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’10). IEEE, 1--8.
    [202]
    Marcos G. Quiles, Ezequiel R. Zorzal, and Elbert E. N. Macau. 2013. A dynamical model for community detection in complex networks. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’13). IEEE, 1--8.
    [203]
    Rajat Raina, Anand Madhavan, and Andrew Y. Ng. 2009. Large-scale deep unsupervised learning using graphics processors. In Proceedings of the 26th International Conference on Machine Learning. ACM, 873--880.
    [204]
    Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. 2014. Quantum support vector machine for big data classification. Phys. Rev. Lett. 113, 13 (2014), 130503.
    [205]
    Jörg Reichardt and Stefan Bornholdt. 2004. Detecting fuzzy community structures in complex networks with a Potts model. Phys. Rev. Lett. 93, 21 (2004), 218701.
    [206]
    Jörg Reichardt and Stefan Bornholdt. 2006. Statistical mechanics of community detection. Phys. Rev. E 74 (July 2006), 016110. Issue 1.
    [207]
    Eleanor G. Rieffel, Davide Venturelli, Bryan O’Gorman, Minh B. Do, Elicia M. Prystay, and Vadim N. Smelyanskiy. 2015. A case study in programming a quantum annealer for hard operational planning problems. Quant. Inf. Proc. 14, 1 (2015), 1--36.
    [208]
    Rigetti. 2018. The Rigetti QPU. Retrieved from http://www.rigetti.com/qpu.
    [209]
    Diego Ristè, Marcus P. da Silva, Colm A. Ryan, Andrew W. Cross, Antonio D. Córcoles, John A. Smolin, Jay M. Gambetta, Jerry M. Chow, and Blake R. Johnson. 2017. Demonstration of quantum advantage in machine learning. npj Quant. Inf. 3, 1 (2017), 16.
    [210]
    Peter Ronhovde and Zohar Nussinov. 2010. Local resolution-limit-free Potts model for community detection. Phys. Rev. E 81, 4 (2010), 046114.
    [211]
    Frank Rosenblatt. 1961. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Technical Report. Cornell Aeronautical Lab Inc, Buffalo, NY.
    [212]
    Christopher Rozell, Don Johnson, Richard Baraniuk, and Bruno Olshausen. 2007. Locally competitive algorithms for sparse approximation. In Proceedings of the IEEE International Conference on Image Processing. (ICIP’07), Vol. 4. IEEE, IV--169.
    [213]
    Christopher J. Rozell, Don H. Johnson, Richard G. Baraniuk, and Bruno A. Olshausen. 2008. Sparse coding via thresholding and local competition in neural circuits. Neural Computat. 20, 10 (2008), 2526--2563.
    [214]
    Krishna Kumar Sabapathy, Haoyu Qi, Josh Izaac, and Christian Weedbrook. 2019. Production of photonic universal quantum gates enhanced by machine learning. Phys. Rev. A 100 (July 2019), 012326. Issue 1.
    [215]
    Siddhartha Santra, Gregory Quiroz, Greg Ver Steeg, and Daniel A. Lidar. 2014. MAX 2-SAT with up to 108 qubits. New J. Phys. 16, 4 (2014), 045006.
    [216]
    Siddhartha Santra, Omar Shehab, and Radhakrishnan Balu. 2017. Ising formulation of associative memory models and quantum annealing recall. Phys. Rev. A 96, 6 (2017), 062330.
    [217]
    Michael T. Schaub, Jean-Charles Delvenne, Martin Rosvall, and Renaud Lambiotte. 2017. The many facets of community detection in complex networks. Appl. Netw. Sci. 2, 1 (2017), 4.
    [218]
    Thomas Schiex, Helene Fargier, Gerard Verfaillie, et al. 1995. Valued constraint satisfaction problems: Hard and easy problems. In Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI’95). 631--639.
    [219]
    Jürgen Schmidhuber. 2015. Deep learning in neural networks: An overview. Neural Netw. 61 (2015), 85--117.
    [220]
    Benjamin Schrauwen, Michiel D’Haene, David Verstraeten, and Jan Van Campenhout. 2008. Compact hardware liquid state machines on FPGA for real-time speech recognition. Neural Netw. 21, 2 (2008), 511--523.
    [221]
    Jonathan Schrock, Alex J. McCaskey, Kathleen E. Hamilton, Travis S. Humble, and Neena Imam. 2017. Recall performance for content-addressable memory using adiabatic quantum optimization. Entropy 19, 9 (2017), 500.
    [222]
    Maria Schuld, Ville Bergholm, Christian Gogolin, Josh Izaac, and Nathan Killoran. 2019. Evaluating analytic gradients on quantum hardware. Phys. Rev. A 99, 3 (2019), 032331.
    [223]
    Maria Schuld, Alex Bocharov, Krysta Svore, and Nathan Wiebe. 2020. Circuit-centric quantum classifiers. Phys. Rev. A 101, 032308 (2020).
    [224]
    Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2014. The quest for a quantum neural network. Quant. Inf. Proc. 13, 11 (2014), 2567--2586.
    [225]
    Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2015. An introduction to quantum machine learning. Contemp. Phys. 56, 2 (2015), 172--185.
    [226]
    Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2015. Simulating a perceptron on a quantum computer. Phys. Lett. A 379, 7 (2015), 660--663.
    [227]
    Catherine D. Schuman, Kathleen Hamilton, Tiffany Mintz, Md Musabbir Adnan, Bon Woong Ku, Sung-Kyu Lim, and Garrett S. Rose. 2019. Shortest path and neighborhood subgraph extraction on a spiking memristive neuromorphic implementation. In Proceedings of the Neuro-Inspired Computational Elements (NICE’19) Workshop.
    [228]
    Catherine D. Schuman, James S. Plank, Adam Disney, and John Reynolds. 2016. An evolutionary optimization framework for neural networks and neuromorphic architectures. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’16). IEEE, 145--154.
    [229]
    Catherine D. Schuman, Thomas E. Potok, Robert M. Patton, J. Douglas Birdwell, Mark E. Dean, Garrett S. Rose, and James S. Plank. 2017. A survey of neuromorphic computing and neural networks in hardware. arXiv preprint arXiv:1705.06963 (2017).
    [230]
    Hadayat Seddiqi and Travis S. Humble. 2014. Adiabatic quantum optimization for associative memory recall. Front. Phys. 2 (2014), 79.
    [231]
    Jae-sun Seo, Bernard Brezzo, Yong Liu, Benjamin D. Parker, Steven K. Esser, Robert K. Montoye, Bipin Rajendran, José A. Tierno, Leland Chang, Dharmendra S. Modha, et al. 2011. A 45nm CMOS neuromorphic chip with a scalable architecture for learning in networks of spiking neurons. In Proceedings of the IEEE Custom Integrated Circuits Conference (CICC’11). IEEE, 1--4.
    [232]
    William Severa, Craig M. Vineyard, Ryan Dellana, Stephen J. Verzi, and James B. Aimone. 2019. Training deep neural networks for binary communication with the Whetstone method. Nat. Mach. Intell. 1, 2 (2019), 86.
    [233]
    William M. Severa, Craig M. Vineyard, Ryan Dellana, and James B. Aimone. 2018. Whetstone: An accessible, platform-independent method for training spiking deep neural networks for neuromorphic processors. In Proceedings of the Neuro Inspired Computational Elements Workshop.
    [234]
    Jeffrey M. Shainline, Sonia M. Buckley, Richard P. Mirin, and Sae Woo Nam. 2017. Superconducting optoelectronic circuits for neuromorphic computing. Phys. Rev. Appl. 7, 3 (2017), 034013.
    [235]
    Ruslan Shaydulin, Hayato Ushijima-Mwesigwa, Ilya Safro, Susan Mniszewski, and Yuri Alexeev. 2018. Community detection across emerging quantum architectures. arXiv preprint arXiv:1810.07765 (2018).
    [236]
    David Sherrington and Scott Kirkpatrick. 1975. Solvable model of a spin-glass. Phys. Rev. Lett. 35, 26 (1975), 1792.
    [237]
    Taime Shoji, Kazuyuki Aihara, and Yoshihisa Yamamoto. 2017. Quantum model for coherent Ising machines: Stochastic differential equations with replicator dynamics. Phys. Rev. A 96, 5 (Nov. 2017).
    [238]
    Peter W. Shor. 1999. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev. 41, 2 (1999), 303--332.
    [239]
    Sumit Bam Shrestha and Garrick Orchard. 2018. SLAYER: Spike layer error reassignment in time. In Proceedings of the International Conference on Advances in Neural Information Processing Systems. 1412--1421.
    [240]
    Hava T. Siegelmann. 2003. Neural and super-turing computing. Minds Mach. 13, 1 (2003), 103--114.
    [241]
    Haozhen Situ, Zhimin He, Lvzhou Li, and Shenggen Zheng. 2018. Quantum generative adversarial network for generating discrete data. arXiv preprint arXiv:1807.01235 (2018).
    [242]
    Robert S. Smith, Michael J. Curtis, and William J. Zeng. 2016. A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355v2 (2017).
    [243]
    Friedrich T. Sommer and Thomas Wennekers. 2001. Associative memory in networks of spiking neurons. Neural Netw. 14, 6--7 (2001), 825--834.
    [244]
    Fengguang Song, Stanimire Tomov, and Jack Dongarra. 2012. Enabling and scaling matrix computations on heterogeneous multi-core and multi-GPU systems. In Proceedings of the 26th ACM International Conference on Supercomputing. ACM, 365--376.
    [245]
    Sen Song, Kenneth D. Miller, and Larry F. Abbott. 2000. Competitive Hebbian learning through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 9 (2000), 919.
    [246]
    Amos J. Storkey and Romain Valabregue. 1999. The basins of attraction of a new Hopfield learning rule. Neural Netw. 12, 6 (1999), 869--876.
    [247]
    Evangelos Stromatias, Daniel Neil, Francesco Galluppi, Michael Pfeiffer, Shih-Chii Liu, and Steve Furber. 2015. Scalable energy-efficient, low-latency implementations of trained spiking deep belief networks on SpiNNaker. In Proceedings of the International Joint Conference on Neural Networks (IJCNN’15). IEEE, 1--8.
    [248]
    Francesco Tacchino, Chiara Macchiavello, Dario Gerace, and Daniele Bajoni. 2018. An artificial neuron implemented on an actual quantum processor. arXiv preprint arXiv:1811.02266 (2018).
    [249]
    Kenta Takata, Alireza Marandi, and Yoshihisa Yamamoto. 2015. Quantum correlation in degenerate optical parametric oscillators with mutual injections. Phys. Rev. A 92, 4 (Oct. 2015).
    [250]
    Y. Takeda, S. Tamate, Y. Yamamoto, H. Takesue, T. Inagaki, and S. Utsunomiya. 2017. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network. Quant. Sci. Technol. 3, 1 (Nov. 2017), 014004.
    [251]
    Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. 2017. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 18 (2017), 180509.
    [252]
    Hayato Ushijima-Mwesigwa, Christian F. A. Negre, and Susan M. Mniszewski. 2017. Graph partitioning using quantum annealing on the D-wave system. arXiv preprint arXiv:1705.03082 (2017).
    [253]
    Sacha Jennifer van Albada, Andrew G. Rowley, Johanna Senk, Michael Hopkins, Maximilian Schmidt, Alan Barry Stokes, David R. Lester, Markus Diesmann, and Steve B. Furber. 2018. Performance comparison of the digital neuromorphic hardware SpiNNaker and the neural network simulation software NEST for a full-scale cortical microcircuit model. Front. Neurosci. 12 (2018), 291.
    [254]
    Peter J. M. Van Laarhoven and Emile H. L. Aarts. 1987. Simulated annealing. In Simulated Annealing: Theory and Applications. Springer, 7--15.
    [255]
    Davide Venturelli, Salvatore Mandrà, Sergey Knysh, Bryan O’Gorman, Rupak Biswas, and Vadim Smelyanskiy. 2015. Quantum optimization of fully connected spin glasses. Phys. Rev. X 5, 3 (2015), 031040.
    [256]
    Guillaume Verdon, Juan Miguel Arrazola, Kamil Brádler, and Nathan Killoran. 2019. A quantum approximate optimization algorithm for continuous problems. arXiv preprint arXiv:1902.00409 (2019).
    [257]
    Guillaume Verdon, Michael Broughton, and Jacob Biamonte. 2017. A quantum algorithm to train neural networks using low-depth circuits. arXiv preprint arXiv:1712.05304 (2017).
    [258]
    Guillaume Verdon, Jason Pye, and Michael Broughton. 2018. A universal training algorithm for quantum deep learning. arXiv preprint arXiv:1806.09729 (2018).
    [259]
    Jeffrey S. Vetter, Ron Brightwell, Maya Gokhale, Pat McCormick, Rob Ross, John Shalf, Katie Antypas, David Donofrio, Travis Humble, Catherine Schuman, et al. 2019. Extreme Heterogeneity 2018-Productive Computational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity. Technical Report. Department of Energy, Office of Science.
    [260]
    Jeffrey S. Vetter, Richard Glassbrook, Jack Dongarra, Karsten Schwan, Bruce Loftis, Stephen McNally, Jeremy Meredith, James Rogers, Philip Roth, Kyle Spafford, et al. 2011. Keeneland: Bringing heterogeneous GPU computing to the computational science community. Comput. Sci. Eng. 13, 5 (2011), 90--95.
    [261]
    Leyuan Wang, Yangzihao Wang, Carl Yang, and John D. Owens. 2016. A comparative study on exact triangle counting algorithms on the GPU. In Proceedings of the ACM Workshop on High Performance Graph Processing. ACM, 1--8.
    [262]
    Zhe Wang, Alireza Marandi, Kai Wen, Robert L. Byer, and Yoshihisa Yamamoto. 2013. Coherent Ising machine based on degenerate optical parametric oscillators. Phys. Rev. A 88, 6 (Dec. 2013).
    [263]
    Dave Wecker, Matthew B. Hastings, and Matthias Troyer. 2016. Training a quantum optimizer. Phys. Rev. A 94, 2 (2016), 022309.
    [264]
    Arman Zaribafiyan, Dominic J. J. Marchand, and Seyed Saeed Changiz Rezaei. 2017. Systematic and deterministic graph minor embedding for Cartesian products of graphs. Quant. Inf. Proc. 16, 5 (2017), 136.
    [265]
    Jinfeng Zeng, Yufeng Wu, Jin-Guo Liu, Lei Wang, and Jiangping Hu. 2019. Learning and inference on generative adversarial quantum circuits. Phys. Rev. A 99, 5 (2019), 052306.
    [266]
    Fang Zhang, Cupjin Huang, Michael Newman, Junjie Cai, Huanjun Yu, Zhengxiong Tian, Bo Yuan, Haihong Xu, Junyin Wu, Xun Gao, Jianxin Chen, Mario Szegedy, and Yaoyun Shi. 2019. Alibaba cloud quantum development kit: Large-scale classical simulation of quantum circuits. arXiv e-prints arXiv:1907.11217 (July 2019).
    [267]
    Kenneth M. Zick, Omar Shehab, and Matthew French. 2015. Experimental quantum annealing: Case study involving the graph isomorphism problem. Sci. Rep. 5 (2015), 11168.

    Cited By

    View all
    • (2024)MnO/ZnO:Zn Thin-Film Frequency Adaptive Heterostructure for Future Sustainable Memristive SystemsNanomaterials10.3390/nano1408065914:8(659)Online publication date: 10-Apr-2024
    • (2024)Quantum and classical computational synergy for emerging contaminants management: Advanced insights into cytochrome P450 metabolic mechanismsCritical Reviews in Environmental Science and Technology10.1080/10643389.2024.2365907(1-25)Online publication date: 3-Jul-2024
    • (2023)Integration of neuromorphic AI in event-driven distributed digitized systems: Concepts and research directionsFrontiers in Neuroscience10.3389/fnins.2023.107443917Online publication date: 17-Feb-2023
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Parallel Computing
    ACM Transactions on Parallel Computing  Volume 7, Issue 1
    Special Issue on Innovations in Systems for Irregular Applications, Part 1 and Regular Paper
    March 2020
    182 pages
    ISSN:2329-4949
    EISSN:2329-4957
    DOI:10.1145/3387354
    Issue’s Table of Contents
    Publication rights licensed to ACM. ACM acknowledges that this contribution was authored or co-authored by an employee, contractor or affiliate of the United States government. As such, the Government retains a nonexclusive, royalty-free right to publish or reproduce this article, or to allow others to do so, for Government purposes only.

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 29 March 2020
    Accepted: 01 January 2020
    Revised: 01 September 2019
    Received: 01 November 2018
    Published in TOPC Volume 7, Issue 1

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Graph algorithms
    2. constraint satisfaction problems
    3. machine learning
    4. neuromorphic computing
    5. optical Ising machines
    6. quantum computing

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • Laboratory Directed Research and Development Program of Oak Ridge National Laboratory
    • U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research
    • UT-Battelle, LLC
    • U.S. Department of Energy
    • Department of Energy, Office of Science, Early Career Research Program
    • ASCR Testbed Pathfinder Program at Oak Ridge National Laboratory
    • United States Department of Defense and used resources of the Computational Research and Development Programs at Oak Ridge National Laboratory

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)354
    • Downloads (Last 6 weeks)31

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)MnO/ZnO:Zn Thin-Film Frequency Adaptive Heterostructure for Future Sustainable Memristive SystemsNanomaterials10.3390/nano1408065914:8(659)Online publication date: 10-Apr-2024
    • (2024)Quantum and classical computational synergy for emerging contaminants management: Advanced insights into cytochrome P450 metabolic mechanismsCritical Reviews in Environmental Science and Technology10.1080/10643389.2024.2365907(1-25)Online publication date: 3-Jul-2024
    • (2023)Integration of neuromorphic AI in event-driven distributed digitized systems: Concepts and research directionsFrontiers in Neuroscience10.3389/fnins.2023.107443917Online publication date: 17-Feb-2023
    • (2022)Memristor-Based Read/Write Circuit with Stable Continuous Read OperationElectronics10.3390/electronics1113201811:13(2018)Online publication date: 27-Jun-2022
    • (2022)Silicon-based optoelectronics for general-purpose matrix computation: a reviewAdvanced Photonics10.1117/1.AP.4.4.0440014:04Online publication date: 1-Jul-2022
    • (2022)Charaterization of Emerging Computing Architectures for Dynamic Simulation of Future Power Grids with Large-Scale Power Electronics2022 IEEE Energy Conversion Congress and Exposition (ECCE)10.1109/ECCE50734.2022.9947571(1-8)Online publication date: 9-Oct-2022
    • (2022)Implementation of Quantum Annealing: A Systematic ReviewIEEE Access10.1109/ACCESS.2022.318811710(73156-73177)Online publication date: 2022
    • (2022) Hardware-Aware In Situ Learning Based on Stochastic Magnetic Tunnel Junctions Physical Review Applied10.1103/PhysRevApplied.17.01401617:1Online publication date: 13-Jan-2022
    • (2022)Frontiers in computing for artificial intelligenceJournal of Instrumentation10.1088/1748-0221/17/03/C0303717:03(C03037)Online publication date: 23-Mar-2022
    • (2022)Future trendsEndorobotics10.1016/B978-0-12-821750-4.00016-5(359-377)Online publication date: 2022
    • Show More Cited By

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Get Access

    Login options

    Full Access

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media