Attention-Based Graph Convolution Collaborative Filtering
Abstract
References
Index Terms
- Attention-Based Graph Convolution Collaborative Filtering
Recommendations
Trust-based collaborative filtering: tackling the cold start problem using regular equivalence
RecSys '18: Proceedings of the 12th ACM Conference on Recommender SystemsUser-based Collaborative Filtering (CF) is one of the most popular approaches to create recommender systems. This approach is based on finding the most relevant k users from whose rating history we can extract items to recommend. CF, however, suffers ...
Typicality-Based Collaborative Filtering Recommendation
Collaborative filtering (CF) is an important and popular technology for recommender systems. However, current CF methods suffer from such problems as data sparsity, recommendation inaccuracy, and big-error in predictions. In this paper, we borrow ideas ...
Revisiting tendency based collaborative filtering for personalized recommendations
CODS-COMAD '18: Proceedings of the ACM India Joint International Conference on Data Science and Management of DataRecommender systems alleviates the problem of information overload by providing personalized suggestions to the users. In this context, recently introduced tendency based recommendation technique is proven to be more simple, intuitive and accurate than ...
Comments
Information & Contributors
Information
Published In
In-Cooperation
- University of Tsukuba: University of Tsukuba
Publisher
Association for Computing Machinery
New York, NY, United States
Publication History
Check for updates
Author Tags
Qualifiers
- Research-article
- Research
- Refereed limited
Conference
Contributors
Other Metrics
Bibliometrics & Citations
Bibliometrics
Article Metrics
- 0Total Citations
- 113Total Downloads
- Downloads (Last 12 months)13
- Downloads (Last 6 weeks)0
Other Metrics
Citations
View Options
Get Access
Login options
Check if you have access through your login credentials or your institution to get full access on this article.
Sign in