Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Computing Autotopism Groups of Partial Latin Rectangles

Published: 30 September 2020 Publication History
  • Get Citation Alerts
  • Abstract

    Computing the autotopism group of a partial Latin rectangle (PLR) can be performed in multiple ways. This study has two aims: comparing some of these methods experimentally to identify those that are competitive; and identifying design goals for developing practical software. We compare six families of algorithms (two backtracking and four graph-theoretic methods), with and without using entry invariants (EIs), in a range of settings. Two EIs are considered: frequencies of row, column, and symbol representatives; and 2 × 2 submatrices. The best approach to computing autotopism groups varies.
    When PLRs have many autotopisms (such as having very few entries or being a group table), the McKay, Meynert, and Myrvold (MMM) method computes generators for the autotopism group efficiently. (The MMM method is the standard way to compute autotopisms.) Otherwise, PLRs ordinarily have trivial or small autotopism groups, and the task is to verify this. The so-called PLR graph method is slightly more efficient in this setting than the MMM method (in some circumstances, around twice as fast).
    With an intermediate number of entries, the quick-to-compute strong EIs are effective at reducing the need for computation without introducing significant overhead. With a full or almost-full PLR, a more sophisticated EI is needed to reduce down-the-line computation.
    These results suggest a hybrid approach to computing autotopism groups: The software decides on suitable EIs based on the input; and the user chooses between the MMM or the PLR graph methods, depending on their dataset.
    This article expands the authors’ previous article Computing autotopism groups of PLRs: a pilot study.

    References

    [1]
    Nogan Alon, Eldar Fischer, and Mario Szegedy. 2001. Parent-identifying codes. J. Comb. Theory Series A 95, 2 (2001), 349--359.
    [2]
    Stephan D. Andres and Raúl M. Falcón. 2019. Colouring games based on autotopisms of Latin hyper-rectangles. Quaest. Math. 42 (2019), 953--975.
    [3]
    Raphael Artzy. 1954. A note on the automorphisms of special loops. Riveon Lemat. 8 (1954), 81. In Hebrew.
    [4]
    Masood Aryapoor and Ebadollah S. Mahmoodian. 2011. On uniformly generating Latin squares. Bull. Inst. Comb. Appl. 62 (2011), 48--58.
    [5]
    Pawan Aurora and Shashank K. Mehta. 2018. The QAP-polytope and the graph isomorphism problem. J. Comb. Optim. 36, 3 (2018), 965--1006.
    [6]
    László Babai. 2016. Graph isomorphism in quasipolynomial time. In Proceedings of the 48th ACM Symposium on Theory of Computing. ACM, New York, 684--697.
    [7]
    László Babai. 2018. Group, graphs, algorithms: the graph isomorphism problem. In Proceedings of the International Congress of Mathematicians. World Sci. Publ., Hackensack, NJ, 3319--3336.
    [8]
    László Babai. 2019. Canonical form for graphs in quasipolynomial time: Preliminary report. In Proceedings of the 51st ACM Symposium on Theory of Computing. ACM, New York, 1237--1246.
    [9]
    László Babai, William M. Kantor, and Eugene M. Luks. 1983. Computational complexity and the classification of finite simple groups. In Proceedings of the 24th IEEE Symposium on Foundations of Computer Science. IEEE, 162--171.
    [10]
    Rosemary A. Bailey. 1982. Latin squares with highly transitive automorphism groups. J. Aust. Math. Soc. 33 (1982), 18--22.
    [11]
    Simon R. Blackburn. 2000. Perfect hash families: Probabilistic methods and explicit constructions. J. Comb. Theory Ser. A 92 (2000), 54--60.
    [12]
    S. Booth and Charles J. Colbourn. 1979. Problems Polynomially Equivalent to Graph Isomorphism. Technical Report CS-77-04, Computer Science Department, University of Waterloo.
    [13]
    Raj C. Bose. 1963. Strongly regular graphs, partial geometries and partially balanced designs. Pacif. J. Math. 13 (1963), 389--419.
    [14]
    Heinrich Brandt. 1927. Über eine verallgemeinerung des gruppenbegriffes. Math. Ann. 96, 1 (1927), 360--366.
    [15]
    Joshua Browning, Douglas S. Stones, and Ian M. Wanless. 2013. Bounds on the number of autotopisms and subsquares of a Latin square. Combinatorica 33 (2013), 11--22.
    [16]
    Darryn Bryant, Melinda Buchanan, and Ian M. Wanless. 2009. The spectrum for quasigroups with cyclic automorphisms and additional symmetries. Disc. Math. 304, 4 (2009), 821--833.
    [17]
    Gregory Butler and Clement W. H. Lam. 1985. A general backtrack algorithm for the isomorphism problem of combinatorial objects. J. Symb. Comput. 1, 4 (1985), 363--381.
    [18]
    Peter C. Cameron. 2015. Asymmetric Latin squares, Steiner triple systems, and edge-parallelisms. (2015). Retrieved from arXiv:1507.02190 [math.CO].
    [19]
    Peter J. Cameron. 1975. Minimal edge-colourings of complete graphs. J. London Math. Soc. (2) 11, 3 (1975), 337--346.
    [20]
    Peter J. Cameron. 1976. Parallelisms of Complete Designs. Cambridge University Press, Cambridge-New York-Melbourne. 144 pages.
    [21]
    Peter J. Cameron. 2011. Research problems from the BCC22. Disc. Math. 311 (2011), 1074--1083.
    [22]
    Nicholas J. Cavenagh and Douglas S. Stones. 2011. Near-automorphisms of Latin squares. J. Combi. Des. 19 (2011), 365--377.
    [23]
    Eiran Danan, Raúl M. Falcón, Dani Kotlar, Trent G. Marbach, and Rebecca J. Stones. 2020. Refining invariants for computing autotopism groups of partial latin rectangles. Disc. Math. 343, 5 (2020), 111812, 21.
    [24]
    Fatih Demirkale, Akira Kamibeppu, Trent G. Marbach, Oktay Olmez, and Rebecca J. Stones. 2019. Graph Latinity. (2019). In preparation.
    [25]
    Stephen DeSalvo. 2016. Exact sampling algorithms for Latin squares and sudoku matrices via probabilistic divide-and-conquer. Algorithmica 79, 3 (2016), 1--21.
    [26]
    Arthur A. Drisko. 1997. Loops of order pn + 1 with transitive automorphism groups. Adv. Math. 128 (1997), 36--39.
    [27]
    Anthony B. Evans. 2018. When Is a Latin Square Based on a Group? Springer International Publishing, Cham, 41--63.
    [28]
    Raúl M. Falcón. 2006. Latin squares associated to principal autotopisms of long cycles. Application in cryptography. In Proceedings of Transgressive Computing 2006: A Conference in Honor of Jean Della Dora. TC2006, 213--230.
    [29]
    Raúl M. Falcón. 2012. The compressed shape of a partial Latin rectangle. In Proceedings of the Spanish Meeting on Computer Algebra and Applications. 95--98.
    [30]
    Raúl M. Falcón. 2012. Cycle structures of autotopisms of the Latin squares of order up to 11. Ars Combin. 103 (2012), 239--256.
    [31]
    Raúl M. Falcón. 2013. The set of autotopisms of partial Latin squares. Disc. Math. 313, 11 (2013), 1150--1161.
    [32]
    Raúl M. Falcón. 2015. Enumeration and classification of self-orthogonal partial Latin rectangles by using the polynomial method. Eur. J. Comb. 48 (2015), 215--223.
    [33]
    Raúl M. Falcón. 2020. Using a CAS/DGS to analyze computationally the configuration of planar bar linkage mechanisms based on partial Latin squares. Math. Comput. Sci. 14 (2020), 375--389.
    [34]
    Raúl M. Falcón and Stephan D. Andres. 2019. Autotopism stabilized colouring games on rook’s graphs. Disc. Appl. Math. 266 (2019), 200--212.
    [35]
    Raúl M. Falcón, Óscar J. Falcón, and Juan Núñez. 2018. Counting and enumerating partial Latin rectangles by means of computer algebra systems and CSP solvers. Math. Meth. Appl. Sci. 41 (2018), 7236--7262.
    [36]
    Raúl M. Falcón, Óscar J. Falcón, and Juan Núñez. 2018. A historical perspective of the theory of isotopisms. Symmetry 10 (2018), 1--21.
    [37]
    Raúl M. Falcón and Jorge Martín-Morales. 2007. Gröbner bases and the number of Latin squares related to autotopisms of Order ≤ 7. J. Symb. Comput. 42, 11--12 (2007), 1142--1154.
    [38]
    Raúl M. Falcón and Juan Núñez. 2007. Partial Latin squares having a Santilli’s autotopism in their autotopism groups. J. Dyn. Syst. Geom. Theor. 5 (2007), 19--32.
    [39]
    Raúl M. Falcón and Rebecca J. Stones. 2015. Classifying partial Latin rectangles. Electron. Notes Disc. Math. 49 (2015), 765--771.
    [40]
    Raúl M. Falcón and Rebecca J. Stones. 2017. Partial Latin rectangle graphs and autoparatopism groups of partial Latin rectangles with trivial autotopism groups. Disc. Math. 340, 6 (2017), 1242--1260.
    [41]
    Raúl M. Falcón and Rebecca J. Stones. 2020. Enumerating partial Latin rectangles. Electron. J. Comb. 27, 2 (2020), #P2.47.
    [42]
    Wang Fang, Rebecca J. Stones, Trent G. Marbach, Gang Wang, and Xiaoguang Liu. 2019. Towards a Latin-square search engine. In Proceedings of the IEEE International Conference on Parallel Distributed Processing with Applications, Big Data Cloud Computing, Sustainable Computing Communications, Social Computing Networking (ISPA/BDCloud/SocialCom/SustainCom’19). IEEE, 727--735.
    [43]
    Stanley Fiorini and Robin J. Wilson. 1976. Edge-colourings of graphs-Some applications. In Proceedings of the 5th British Combinatorial Conference. 193--202.
    [44]
    Timothy Gowers and Jason Long. 2016. The length of an s-increasing sequence of r-tuples. Retrieved from arXiv:1609.08688 [math.CO].
    [45]
    Martin Grohe, Daniel Neuen, and Pascal Schweitzer. 2018. A faster isomorphism test for graphs of small degree. In Proceedings of the 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS’18). IEEE Computer Society, Los Alamitos, CA, 89--100.
    [46]
    Martin Grohe, Daniel Neuen, Pascal Schweitzer, and Daniel Wiebking. 2018. An improved isomorphism test for bounded-tree-width graphs. In Proceedings of the 45th International Colloquium on Automata, Languages, and Programming (LIPIcs), Vol. 107. Schloss Dagstuhl. Leibniz-Zent. Inform., Wadern, 14.
    [47]
    Ram P. Gupta. 1978. On the chromatic index and the cover index of a multigraph. In Proceedings of the Theory and Applications of Graphs (Lecture Notes in Math.), Vol. 642. 204--215.
    [48]
    A. J. W. Hilton. 1977. Embedding incomplete Latin rectangles and extending the edge colourings of graphs. Nanta Math. 10, 2 (1977), 201--206.
    [49]
    Alexander Hulpke, Petteri Kaski, and Patric R. J. Östergård. 2011. The number of Latin squares of order 11. Math. Comp. 80 (2011), 1197--1219.
    [50]
    Edwin C. Ihrig and Benjamin M. Ihrig. 2008. The recognition of symmetric Latin squares. J. Comb. Des. 16, 4 (2008), 291--300.
    [51]
    Mark Jacobson and Peter Matthews. 1996. Generating uniformly distributed Latin squares. J. Comb. Des. 4, 6 (1996), 405--437.
    [52]
    Tommi Junttila and Petteri Kaski. 2007. Engineering an efficient canonical labeling tool for large and sparse graphs. In Proceedings of the SIAM Workshop on Algorithm Engineering and Experiments. SIAM, 135--149.
    [53]
    Petteri Kaski. 2005. Algorithms for Classification of Combinatorial Objects. Ph.D Thesis. Teknillinen Korkeakoulu, Helsinki, Finland.
    [54]
    Petteri Kaski and Patric R. J. Östergård. 2006. Classification Algorithms for Codes and Designs (Algorithms and Computation in Mathematics), Vol. 15. Springer-Verlag, Berlin.
    [55]
    A. D. Keedwell. 1994. Critical sets and critical partial Latin squares. In Proceedings of the Combinatorics, Graph Theory, Algorithms and Applications Conference. World Science Publishing, River Edge, NJ, 111--123.
    [56]
    Brent Kerby and Jonathan D. H. Smith. 2010. Quasigroup automorphisms and symmetric group characters. Comment. Math. Univ. Carol. 51, 2 (2010), 279--286.
    [57]
    Brent Kerby and Jonathan D. H. Smith. 2010. Quasigroup automorphisms and the Norton-Stein complex. Proc. Amer. Math. Soc. 138 (2010), 3079--3088.
    [58]
    Stefan Klus and Tuhin Sahai. 2018. A spectral assignment approach for the graph isomorphism problem. Inf. Inference 7, 4 (2018), 689--706.
    [59]
    G. Kolesova, C. W. H. Lam, and L. Thiel. 1990. On the number of 8 × 8 Latin squares. J. Comb. Theory Ser. A 54, 1 (1990), 143--148.
    [60]
    Daniel Kotlar. 2012. Parity types, cycle structures and autotopisms of Latin squares. Electron. J. Comb. 19, 3 (2012).
    [61]
    Daniel Kotlar. 2014. Computing the autotopy group of a Latin square by cycle structure. Disc. Math. 331 (2014), 74--82.
    [62]
    Jeffrey S. Leon. 1979. An algorithm for computing the automorphism group of a Hadamard matrix. J. Comb. Theory Ser. A 27, 3 (1979), 289--306.
    [63]
    Jeffrey S. Leon. 1982. Computing automorphism groups of error-correcting codes. IEEE Trans. Inf. Theory 28, 3 (1982), 496--511.
    [64]
    Jeffrey S. Leon. 1984. Computing automorphism groups of combinatorial objects. In Proceedings of the Conference on Computational Group Theory. Academic Press, London, 321--335.
    [65]
    Brendan D. McKay. 1978. Computing automorphisms and canonical labellings of graphs. In Proceedings of the International Conference on Combinatorial Mathematics (Lecture Notes in Math.), Vol. 686. Springer, Berlin, 223--232.
    [66]
    Brendan D. McKay. 1981. Practical graph isomorphism. Congr. Numer. 30 (1981), 45--87.
    [67]
    Brendan D. McKay. 1998. Isomorph-free exhaustive generation. J. Algor. 26, 2 (1998), 306--324.
    [68]
    Brendan D. McKay, Alison Meynert, and Wendy Myrvold. 2007. Small Latin squares, quasigroups, and loops. J. Comb. Des. 15 (2007), 98--119.
    [69]
    Brendan D. McKay and Adolfo Piperno. 2014. Practical graph isomorphism, II. J. Symb. Comput. 60 (2014), 94--112.
    [70]
    Brendan D. McKay and Ian M. Wanless. 1999. Most Latin squares have many subsquares. J. Comb. Theory Ser. A 86 (1999), 323--347.
    [71]
    Brendan D. McKay and Ian M. Wanless. 2005. On the number of Latin squares. Ann. Comb. 9 (2005), 335--344.
    [72]
    Brendan D. McKay, Ian M. Wanless, and Xiande Zhang. 2015. The order of automorphisms of quasigroups. J. Comb. Des. 23 (2015), 275--288.
    [73]
    Mahamendige J. L. Mendis and Ian M. Wanless. 2017. Autoparatopisms of quasigroups and latin squares. J. Comb. Des. 25 (2017), 51--74.
    [74]
    Hui Meng, Yumin Zheng, and Yuge Zheng. 2008. The classification construction and the non-isomorphism counting of symmetric Latin square. Adv. Stud. Contemp. Math. (Kyungshang) 17, 2 (2008), 169--179.
    [75]
    Gary L. Miller. 1977. Graph isomorphism, general remarks. In Proceedings of the 9th ACM Symposium on Theory of Computing. ACM, New York, 143--150.
    [76]
    Gary L. Miller. 1978. On the nlog n isomorphism technique: A preliminary report. In Proceedings of the 10th ACM Symposium on Theory of Computing. Springer, Berlin, 51--58.
    [77]
    Elchanan Mossel and Jiaming Xu. 2019. Seeded graph matching via large neighborhood statistics. In Proceedings of the 13th ACM-SIAM SDA. SIAM, 1005--1014.
    [78]
    Ronald C. Read and Derek G. Corneil. 1977. The graph isomorphism disease. J. Graph Theory 1, 4 (1977), 339--363.
    [79]
    Pascal Schweitzer and Daniel Wiebking. 2019. A unifying method for the design of algorithms canonizing combinatorial objects. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19). ACM, New York, 1247--1258.
    [80]
    Nicolas Sendrier. 2000. Finding the permutation between equivalent linear codes: The support splitting algorithm. IEEE Trans. Inform. Theory 46, 4 (2000), 1193--1203.
    [81]
    Ákos Seress. 2003. Permutation Group Algorithms (Cambridge Tracts in Mathematics), Vol. 152. Cambridge University Press, Cambridge, UK.
    [82]
    Charles C. Sims. 1970. Computational methods in the study of permutation groups. In Proceedings of the Conference on Computational Problems in Abstract Algebra. 169--183.
    [83]
    Charles C. Sims. 1971. Determining the conjugacy classes of a permutation group. In Computers in Algebra and Number Theory (Proceedings of the SIAM-AMS Symposium on Applied Mathematics, New York, 1970), Vol. IV. Amer. Math. Soc., Providence, RI, 191--195.
    [84]
    Douglas S. Stones. 2010. The many formulae for the number of Latin rectangles. Electron. J. Comb. 17 (2010), A1.
    [85]
    Douglas S. Stones. 2013. Symmetries of partial Latin squares. Eur. J. Comb. 34, 7 (2013), 1092--1107.
    [86]
    Douglas S. Stones, Petr Vojtěchovský, and Ian M. Wanless. 2012. Cycle structure of autotopisms of quasigroups and Latin squares. J. Comb. Des. 20 (2012), 227--263.
    [87]
    Rebecca J. Stones. 2020. K-plex 2-Erasure codes and Blackburn partial Latin squares. IEEE Trans. Inf. Theory 66, 6 (2020), 3704--3713.
    [88]
    Rebecca J. Stones, Raúl M. Falcón, Daniel Kotlar, and Trent G. Marbach. 2020. Computing autotopism groups of partial Latin rectangles: A pilot study. Comput. Math. Method. Early view (2020), e1094.
    [89]
    Rebecca J. Stones, Ming Su, Xiaoguang Liu, Gang Wang, and Sheng Lin. 2015. A Latin square autotopism secret sharing scheme. Des. Codes Cryptogr. 35 (2015), 1--16.
    [90]
    The GAP Group. 2018. GAP—Groups, Algorithms, Programming—A system for computational discrete algebra. Retrieved from http://www.gap-system.org/.
    [91]
    Gerhard Thomsen. 1929. Topologische fragen der differentialgeometrie XII. schnittpunktssätze in ebenen geweben. Abh. Math. Sem. Univ. Hamburg 7, 1 (1929), 99--106.
    [92]
    Svetlana Topalova. 2003. Classification of Hadamard matrices of order 44 with automorphisms of order 7. Disc. Math. 260, 1--3 (2003), 275--283.
    [93]
    Ian M. Wanless. 2002. A generalisation of transversals for Latin squares. Electron. J. Comb. 9, 1 (2002).
    [94]
    Ian M. Wanless. 2004. A partial Latin squares problem posed by Blackburn. Bull. Inst. Comb. Appl. 42 (2004), 76--80.
    [95]
    Ian M. Wanless. 2005. Atomic Latin squares based on cyclotomic orthomorphisms. Electron. J. Comb. 12 (2005).
    [96]
    Ian M. Wanless and Edwin C. Ihrig. 2005. Symmetries that Latin squares inherit from 1-factorizations. J. Comb. Des. 13 (2005), 157--172.
    [97]
    B. Weisfeiler. 1976. On Construction and Identification of Graphs. Springer-Verlag, Berlin-New York.
    [98]
    David E. Woolbright. 1978. An n × n latin square has a transversal with at least n − √n distinct symbols. J. Comb. Theory Ser. A 24, 2 (1978), 235--237.
    [99]
    Meng Yan, Jiaqi Feng, Trent G. Marbach, Rebecca J. Stones, Gang Wang, and Xiaoguang Liu. 2019. Gecko: A resilient dispersal scheme for multi-cloud storage. IEEE Access 7 (2019), 77387--77397.
    [100]
    Qifa Yan, Minquan Cheng, Xiaohu Tang, and Qingchun Chen. 2017. On the placement delivery array design for centralized coded caching scheme. IEEE Trans. Inf. Theory 63, 9 (2017), 5821--5833.
    [101]
    Liping Yi, Rebecca J. Stones, and Gang Wang. 2019. Two-erasure codes from 3-plexes. In Network and Parallel Computing, Xiaoxin Tang, Quan Chen, Pradip Bose, Weiming Zheng, and Jean-Luc Gaudiot (Eds.). Springer International Publishing, Cham, 264--276.

    Cited By

    View all
    • (2021)Recognition and Analysis of Image Patterns Based on Latin Squares by Means of Computational Algebraic GeometryMathematics10.3390/math90606669:6(666)Online publication date: 21-Mar-2021

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Journal of Experimental Algorithmics
    ACM Journal of Experimental Algorithmics  Volume 25, Issue
    Special Issue ALENEX 2018 and Regular Papers
    2020
    313 pages
    ISSN:1084-6654
    EISSN:1084-6654
    DOI:10.1145/3388470
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 30 September 2020
    Accepted: 01 July 2020
    Revised: 01 May 2020
    Received: 01 October 2019
    Published in JEA Volume 25

    Author Tags

    1. Autotopism
    2. Latin square
    3. partial Latin rectangle

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    • NSF of China
    • NSFC Research Fellowship for International Young Scientists
    • Science and Technology Development Plan of Tianjin
    • Junta de Andalucía and the Departmental Research Budget of the Department of Applied Mathematics I of the University of Seville
    • Fundamental Research Funds for the Central Universities and SAFEA: Overseas Young Talents in Cultural and Educational Sector

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)14
    • Downloads (Last 6 weeks)0
    Reflects downloads up to 28 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Recognition and Analysis of Image Patterns Based on Latin Squares by Means of Computational Algebraic GeometryMathematics10.3390/math90606669:6(666)Online publication date: 21-Mar-2021

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media