Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Freeform quad-based kirigami

Published: 27 November 2020 Publication History

Abstract

Kirigami, the traditional Japanese art of paper cutting and folding generalizes origami and has initiated new research in material science as well as graphics. In this paper we use its capabilities to perform geometric modeling with corrugated surface representations possessing an isometric unfolding into a planar domain after appropriate cuts are made. We initialize our box-based kirigami structures from orthogonal networks of curves, compute a first approximation of their unfolding via mappings between meshes, and complete the process by global optimization. Besides the modeling capabilities we also study the interesting geometry of special kirigami structures from the theoretical side. This experimental paper strives to relate unfoldable checkerboard arrangements of boxes to principal meshes, to the transformation theory of discrete differential geometry, and to a version of the Gauss theorema egregium.

Supplementary Material

MP4 File (a209-jiang.mp4)
MP4 File (3414685.3417844.mp4)
Presentation video

References

[1]
Alexander Bobenko and Yuri Suris. 2009. Discrete differential geometry: Integrable Structure. Number 98. American Math. Soc.
[2]
David Bommes, Henrik Zimmer, and Leif Kobbelt. 2009. Mixed-integer Quadrangulation. ACM Trans. Graph. 28, 3 (2009), #77,1--10.
[3]
Mario Botsch, Stephan Steinberg, Stephan Bischoff, and Leif Kobbelt. 2002. OpenMesh: A Generic and Efficient Polygon Mesh Data Structure. Proc. OpenSG Symposium.
[4]
Toen Castle, Yigil Cho, Xingting Gong, Euiyeon Jung, Daniel M. Sussman, Shu Yang, and Randall D. Kamien. 2014. Making the Cut: Lattice Kirigami Rules. Phys. Rev. Lett 113, 245502 (2014), 1--5.
[5]
Toen Castle, Daniel M. Sussman, Michael Tanis, and Randall D. Kamien. 2016. Additive lattice kirigami. Sci. Advances 2, e1601258 (2016), 1--11.
[6]
Frédéric Cazals and Marc Pouget. 2004. Smooth surfaces, umbilics, lines of curvatures, foliations, ridges and the medial axis: a concise overview. Research Report RR-5138. INRIA. https://hal.inria.fr/inria-00071445/
[7]
Gary Choi, Levi Dudte, and L. Mahadevan. 2019. Programming shape using kirigami tessellations. Nature Materials 18 (2019), 999--1004.
[8]
David Cohen-Steiner and Jean Marie Morvan. 2003. Restricted Delaunay triangulations and normal cycle. In Proc. ACM Symp. Comp. Graphics. 312--321.
[9]
Erik D. Demaine and Joseph O'Rourke. 2007. Geometric Folding Algorithms. Cambridge University Press.
[10]
Erik D. Demaine and Tomohiro Tachi. 2017. Origamizer: A Practical Algorithm for Folding Any Polyhedron. In Proc. 33rd SoCG. 1--15.
[11]
Manfredo do Carmo. 1976. Differential Geometry of Curves and Surfaces. Prentice-Hall.
[12]
Levi H. Dudte, Etienne Vouga, Tomohiro Tachi, and L. Mahadevan. 2016. Programming curvature using origami tessellations. Nature Materials 15 (2016), 583--588.
[13]
Ruslan Guseinov, Connor McMahan, Jesús Pérez, Chiara Daraio, and Bernd Bickel. 2020. Programming temporal morphing of self-actuated shells. Nature Communications 11 (2020), #237,1--7.
[14]
Ruslan Guseinov, Eder Miguel, and Bernd Bickel. 2017. CurveUps: shaping objects from flat plates with tension-actuated curvature. ACM Trans. Graph. 36, 4 (2017), #64,1--12.
[15]
Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing library. https://libigl.github.io
[16]
Caigui Jiang, Klara Mundilova, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2019a. Curve-pleated structures. ACM Trans. Graph. 38, 6 (2019), #169,1--13.
[17]
Caigui Jiang, Chi-Han Peng, Peter Wonka, and Helmut Pottmann. 2019b. Checkerboard patterns with black rectangles. ACM Trans. Graph. 38, 6 (2019), #171,1--13.
[18]
Caigui Jiang, Cheng Wang, Florian Rist, Johannes Wallner, and Helmut Pottmann. 2020. Quad-mesh based isometric mappings and developable surfaces. ACM Trans. Graph. 39, 4 (2020), #128,1--13.
[19]
Mina Konaković, Keenan Crane, Bailin Deng, Sophien Bouaziz, Daniel Piker, and Mark Pauly. 2016. Beyond Developable: Computational Design and Fabrication with Auxetic Materials. ACM Trans. Graph. 35, 4 (2016).
[20]
Mina Konaković-Luković, Julian Panetta, Keenan Crane, and Mark Pauly. 2018. Rapid Deployment of Curved Surfaces via Programmable Auxetics. ACM Trans. Graph. 37, 4 (2018), #106,1--13.
[21]
Ligang Liu, Lei Zhang, Yin Xu, Craig Gotsman, and Steven Gortler. 2008. A local/global approach to mesh parameterization. Comput. Graph. Forum 27, 5 (2008), 1495--1504.
[22]
Kaj Madsen, Hans Bruun Nielsen, and Ole Tingleff. 2004. Methods for non-linear least squares problems (2nd ed.). Technical Univ. Denmark.
[23]
Tanmoy Mukhopadhyay et al. 2020. Programmable stiffness and shape modulation in origami materials: emergence of a distant actuation feature. Applied Materials Today 19, 100537 (2020), 1--7.
[24]
Helmut Pottmann, Yang Liu, Johannes Wallner, Alexander Bobenko, and Wenping Wang. 2007. Geometry of Multi-layer Freeform Structures for Architecture. ACM Trans. Graph. 26, 3 (2007), #65,1--11.
[25]
Nicolas Ray, Bruno Vallet, Wan Chiu Li, and Bruno Lévy. 2008. N-Symmetry Direction Field Design. ACM Trans. Graph. 27, 2 (2008), #10,1--13.
[26]
Keith A. Seffen. 2012. Compliant shell mechanisms. Phil. Trans. R. Soc. A 370 (2012), 2010--2026.
[27]
Olga Sorkine and Marc Alexa. 2007. As-rigid-as-possible surface modeling. In Proc. Symposium Geometry Processing. 109--116.
[28]
Daniel M. Sussman, Yigil Cho, Toen Castle, Xingting Gong, Euiyeon Jung, Shu Yang, and Randall D. Kamien. 2015. Algorithmic lattice kirigami: A route to pluripotent materials. PNAS 112, 24 (2015), 7449--7453.
[29]
Tomohiro Tachi. 2009. Generalizationof Rigid Foldable Quadrilateral Mesh Origami. In Proc. IASS Symposium. Univ. Politècnica de València, 2287--2294.
[30]
Tomohiro Tachi. 2010a. Freeform Variations of Origami. J. Geom. Graphics 14 (2010), 203--215.
[31]
Tomohiro Tachi. 2010b. Origamizing Polyhedral Surfaces. IEEE Trans. Vis. Comput. Graph. 16 (2010), 298--311.
[32]
Yichao Tang, Yanbin Li, Yaoye Hong, and Jie Yin. 2019. Programmable active kirigami metasheets with more freedom of actuation. PNAS 116 (2019), 26407--13.
[33]
Sivan Toledo. 2003. Taucs, A Library of Sparse Linear Solvers. http://www.tau.ac.il/~stoledo/taucs
[34]
Fei Wang, Xiaogang Guo, Jingxian Xu, Yihui Zhang, and C. Q. Chen. 2017. Patterning curved three-dimensional structures with programmable kirigami designs. J. Appl. Mech. 84, 061007 (2017), 1--7.
[35]
Zhiyuan Wei, Zengcai V. Guo, Levi Dudte, Hiyi Liang, and L. Mahadevan. 2013. Geometric Mechanics of Periodic Pleated Origami. Phys. Rev. Lett. 110, 215501 (2013), 1--5.
[36]
Ruikang Xie, Yan Chen, and Joseph M. Gattas. 2015. Parametrisation and application of cube and eggbox-type folded geometries. Intl. J. Space Structures 30 (2015), 99--110.
[37]
Yihui Zhang et al. 2015. A mechanically driven form of kirigami as a route to 3D mesostructures in micro/nanomembranes. PNAS 112 (2015), 11757--64.

Cited By

View all
  • (2024)Designing triangle meshes with controlled roughnessACM Transactions on Graphics10.1145/368794043:6(1-20)Online publication date: 19-Dec-2024
  • (2024)Fabric Tessellation: Realizing Freeform Surfaces by SmockingACM Transactions on Graphics10.1145/365815143:4(1-20)Online publication date: 19-Jul-2024
  • (2023)Digital 3D Smocking DesignACM Transactions on Graphics10.1145/3631945Online publication date: 16-Nov-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 39, Issue 6
December 2020
1605 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3414685
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 November 2020
Published in TOG Volume 39, Issue 6

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. computational origami
  2. digital fabrication
  3. discrete differential geometry
  4. kirigami
  5. quad meshes

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)390
  • Downloads (Last 6 weeks)38
Reflects downloads up to 11 Feb 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Designing triangle meshes with controlled roughnessACM Transactions on Graphics10.1145/368794043:6(1-20)Online publication date: 19-Dec-2024
  • (2024)Fabric Tessellation: Realizing Freeform Surfaces by SmockingACM Transactions on Graphics10.1145/365815143:4(1-20)Online publication date: 19-Jul-2024
  • (2023)Digital 3D Smocking DesignACM Transactions on Graphics10.1145/3631945Online publication date: 16-Nov-2023
  • (2023)Spectral Coarsening with Hodge LaplaciansACM SIGGRAPH 2023 Conference Proceedings10.1145/3588432.3591544(1-11)Online publication date: 23-Jul-2023
  • (2023)Cyano-chromic Interface: Aligning Human-Microbe Temporalities Towards Noticing and Attending to Living ArtefactsProceedings of the 2023 ACM Designing Interactive Systems Conference10.1145/3563657.3596132(820-838)Online publication date: 10-Jul-2023
  • (2023)Image-Based OA-Style Paper Pop-Up Design via Mixed-Integer ProgrammingIEEE Transactions on Visualization and Computer Graphics10.1109/TVCG.2022.318956929:10(4269-4283)Online publication date: 1-Oct-2023
  • (2022)Pneumatic Auxetics:Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems10.1145/3491101.3519801(1-7)Online publication date: 27-Apr-2022
  • (2022)Theorem on the Compatibility of Spherical Kirigami TessellationsPhysical Review Letters10.1103/PhysRevLett.128.035501128:3Online publication date: 21-Jan-2022
  • (2022)Effective continuum models for the buckling of non-periodic architected sheets that display quasi-mechanism behaviorsJournal of the Mechanics and Physics of Solids10.1016/j.jmps.2022.104934166(104934)Online publication date: Sep-2022
  • (2022)Shape-morphing mechanical metamaterialsComputer-Aided Design10.1016/j.cad.2021.103146143:COnline publication date: 9-Apr-2022
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media