Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Locking-Proof Tetrahedra

Published: 21 April 2021 Publication History

Abstract

The simulation of incompressible materials suffers from locking when using the standard finite element method (FEM) and coarse linear tetrahedral meshes. Locking increases as the Poisson ratio ν gets close to 0.5 and often lower Poisson ratio values are used to reduce locking, affecting volume preservation. We propose a novel mixed FEM approach to simulating incompressible solids that alleviates the locking problem for tetrahedra. Our method uses linear shape functions for both displacements and pressure, and adds one scalar per node. It can accommodate nonlinear isotropic materials described by a Young’s modulus and any Poisson ratio value by enforcing a volumetric constitutive law. The most realistic such material is Neo-Hookean, and we focus on adapting it to our method. For ν = 0.5, we can obtain full volume preservation up to any desired numerical accuracy. We show that standard Neo-Hookean simulations using tetrahedra are often locking, which, in turn, affects accuracy. We show that our method gives better results and that our Newton solver is more robust. As an alternative, we propose a dual ascent solver that is simple and has a good convergence rate. We validate these results using numerical experiments and quantitative analysis.

Supplementary Material

francu (francu.zip)
Appendix, image and software files for Locking-Proof Tetrahedra
40-2-3444949-Article12 (40-2-3444949-article12.mp4)
Presentation at SIGGRAPH Asia '21

References

[1]
James Ahrens, Berk Geveci, and Charles Law. 2005. Paraview: An end-user tool for large data visualization. The Visualization Handbook 717, 8 (2005), 717--731.
[2]
Dina Al Akhrass, Sylvain Drapier, Julien Bruchon, and Sébastien Fayolle. 2012. Stabilized finite element methods to deal with incompressibility in solid mechanics in finite strains. In European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012).
[3]
Sheldon Andrews, Marek Teichmann, and Paul G. Kry. 2017. Geometric stiffness for real-time constrained multibody dynamics. Computer Graphics Forum 36, 2 (2017), 235--246.
[4]
Jean-François Aujol. 2009. Some first-order algorithms for total variation based image restoration. Journal of Mathematical Imaging and Vision 34, 3 (2009).
[5]
Ivo Babuška and Manil Suri. 1992. Locking effects in the finite element approximation of elasticity problems. Numer. Math. 62, 1 (1992), 439--463.
[6]
David Baraff and Andrew Witkin. 1998. Large steps in cloth simulation. In Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’98). 43--54.
[7]
Adam W. Bargteil and Elaine Cohen. 2014. Animation of deformable bodies with quadratic Bézier finite elements. ACM Transactions on Graphics (TOG) 33, 3, Article 27 (2014), 10 pages.
[8]
Klaus-Jürgen Bathe. 2001. The inf–sup condition and its evaluation for mixed finite element methods. Computers & Structures 79, 2 (2001), 243--252.
[9]
Klaus-Jürgen Bathe. 2006. Finite Element Procedures. Prentice Hall.
[10]
Christopher Batty and Robert Bridson. 2008. Accurate viscous free surfaces for buckling, coiling, and rotating liquids. In Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 219--228.
[11]
Jan Bender, Kenny Erleben, and Jeff Trinkle. 2014. Interactive simulation of rigid body dynamics in computer graphics. Computer Graphics Forum 33, 1 (2014), 246--270.
[12]
Jan Bender, Matthias Müller, and Miles Macklin. 2017. A survey on position based dynamics. In EUROGRAPHICS 2017 Tutorials.
[13]
Michele Benzi, Gene H. Golub, and Jörg Liesen. 2005. Numerical solution of saddle point problems. Acta Numerica 14 (2005), 1--137.
[14]
James Bern, Pol Banzet, Roi Poranne, and Stelian Coros. 2019. Trajectory optimization for cable-driven soft robot locomotion. In Robotics: Science and Systems (RSS 2019).
[15]
Daniele Boffi, Franco Brezzi, and Michel Fortin. 2013. Mixed Finite Element Methods and Applications. Vol. 44. Springer.
[16]
Javier Bonet and A. J. Burton. 1998. A simple average nodal pressure tetrahedral element for incompressible and nearly incompressible dynamic explicit applications. Communications in Numerical Methods in Engineering 14, 5 (1998), 437--449.
[17]
Javier Bonet and Richard D. Wood. 1997. Nonlinear Continuum Mechanics for Finite Element Analysis. Cambridge University Press.
[18]
Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014. Projective dynamics: Fusing constraint projections for fast simulation. ACM Transactions on Graphics (TOG) 33, 4, Article 154 (2014), 11 pages.
[19]
Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends® in Machine Learning 3, 1 (2011), 1--122.
[20]
Christopher Brandt, Leonardo Scandolo, Elmar Eisemann, and Klaus Hildebrandt. 2019. The reduced immersed method for real-time fluid-elastic solid interaction and contact simulation. ACM Transactions on Graphics (TOG) 38, 6, Article 191 (2019), 16 pages.
[21]
Robert Bridson. 2015. Fluid Simulation for Computer Graphics. AK Peters/CRC Press.
[22]
Miguel Cervera, Michele Chiumenti, Quino Valverde, and Carlos Agelet de Saracibar. 2003. Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Computer Methods in Applied Mechanics and Engineering 192, 49 (2003), 5249--5263.
[23]
Isaac Chao, Ulrich Pinkall, Patrick Sanan, and Peter Schröder. 2010. A simple geometric model for elastic deformations. ACM Transactions on Graphics (TOG) 29, 4, Article 38 (2010), 6 pages.
[24]
Dominique Chapelle and Klaus-Jürgen Bathe. 1993. The inf-sup test. Computers & Structures 47, 4--5 (1993), 537--545.
[25]
Oscar Civit-Flores and Antonio Susín. 2014. Robust treatment of degenerate elements in interactive corotational FEM simulations. In Computer Graphics Forum, Vol. 33. 298--309.
[26]
Eulalie Coevoet, Adrien Escande, and Christian Duriez. 2017. Optimization-based inverse model of soft robots with contact handling. IEEE Robotics and Automation Letters 2, 3 (2017), 1413--1419.
[27]
Dimitar Dinev, Tiantian Liu, Jing Li, Bernhard Thomaszewski, and Ladislav Kavan. 2018. FEPR: Fast energy projection for real-time simulation of deformable objects. ACM Transactions on Graphics (TOG) 37, 4, Article 79 (2018), 12 pages.
[28]
Christian Duriez. 2013. Real-time Haptic Simulation of Medical Procedures Involving Deformations and Device-tissue Interactions. Habilitation à diriger des recherches. Université des Sciences et Technologie de Lille - Lille I.
[29]
Kenny Erleben, Jon Sporring, Knud Henriksen, and Henrik Dohlmann. 2005. Physics-based Animation. Charles River Media.
[30]
Mihai Frâncu, Arni Asgeirsson, and Kenny Erleben. 2019. High fidelity simulation of corotational linear FEM for incompressible materials. In Motion, Interaction and Games (MIG 2019).
[31]
Mihai Frâncu and Florica Moldoveanu. 2017. Position based simulation of solids with accurate contact handling. Computers & Graphics 69 (2017), 12--23.
[32]
Rony Goldenthal, David Harmon, Raanan Fattal, Michel Bercovier, and Eitan Grinspun. 2007. Efficient simulation of inextensible cloth. ACM Transactions on Graphics (TOG) 26, 3, Article 49 (2007), 8 pages.
[33]
Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. Retrieved from http://eigen.tuxfamily.org.
[34]
Florian Hecht, Yeon Jin Lee, Jonathan R. Shewchuk, and James F. O’Brien. 2012. Updated sparse Cholesky factors for corotational elastodynamics. ACM Transactions on Graphics (TOG) 31, 5, Article 123 (2012), 13 pages.
[35]
Ulrich Heisserer, Stefan Hartmann, Alexander Düster, and Zohar Yosibash. 2008. On volumetric locking-free behaviour of p-version finite elements under finite deformations. Communications in Numerical Methods in Engineering 24, 11 (2008), 1019--1032.
[36]
Leonard R. Herrmann. 1965. Elasticity equations for incompressible and nearly incompressible materials by a variational theorem. AIAA Journal 3, 10 (1965), 1896--1900.
[37]
Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo. 2018. Tetrahedral meshing in the wild. ACM Transactions on Graphics 37, 4, Article 60 (2018), 14 pages.
[38]
Thomas J. R. Hughes. 2012. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Courier Corporation.
[39]
Filip Ilievski, Aaron D. Mazzeo, Robert F. Shepherd, Xin Chen, and George M. Whitesides. 2011. Soft robotics for chemists. Angew. Chem International Edition 50, 8 (2011), 1890--1895.
[40]
Geoffrey Irving, Craig Schroeder, and Ronald Fedkiw. 2007. Volume conserving finite element simulations of deformable models. ACM Transactions on Graphics (TOG) 26, 3, Article 13 (2007), 6 pages.
[41]
Geoffrey Irving, Joseph Teran, and Ronald Fedkiw. 2004. Invertible finite elements for robust simulation of large deformation. In Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. 131--140.
[42]
Peter Kaufmann, Sebastian Martin, Mario Botsch, and Markus Gross. 2009. Flexible simulation of deformable models using discontinuous Galerkin FEM. Graphical Models 71, 4 (2009), 153--167.
[43]
Ryo Kikuuwe, Hiroaki Tabuchi, and Motoji Yamamoto. 2009. An edge-based computationally efficient formulation of Saint Venant-Kirchhoff tetrahedral finite elements. ACM Transactions on Graphics (TOG) 28, 1, Article 8 (2009), 13 pages.
[44]
Theodore Kim, Fernando De Goes, and Hayley Iben. 2019. Anisotropic elasticity for inversion-safety and element rehabilitation. ACM Transactions on Graphics (TOG) 38, 4, Article 69 (2019), 15 pages.
[45]
Petr Krysl and B. Zhu. 2008. Locking-free continuum displacement finite elements with nodal integration. International Journal for Numerical Methods in Engineering 76, 7 (2008), 1020--1043.
[46]
Tassilo Kugelstadt, Dan Koschier, and Jan Bender. 2018. Fast corotated FEM using operator splitting. Computer Graphics Forum 37, 8 (2018), 149--160.
[47]
Tiantian Liu, Sofien Bouaziz, and Ladislav Kavan. 2017. Quasi-Newton methods for real-time simulation of hyperelastic materials. ACM Transactions on Graphics (TOG) 36, 3, Article 116a (2017), 16 pages.
[48]
Steve A. Maas, Benjamin J. Ellis, Gerard A. Ateshian, and Jeffrey A. Weiss. 2012. FEBio: Finite elements for biomechanics. Journal of Biomechanical Engineering 134, 1 (2012), 10.
[49]
Miles Macklin, Kenny Erleben, Matthias Müller, Nuttapong Chentanez, Stefan Jeschke, and Viktor Makoviychuk. 2019. Non-smooth Newton methods for deformable multi-body dynamics. ACM Transactions on Graphics (TOG) 38, 5, Article 140 (2019), 20 pages.
[50]
Miles Macklin, Matthias Müller, and Nuttapong Chentanez. 2016. XPBD: Position-based simulation of compliant constrained dynamics. In Proceedings of the 9th International Conference on Motion in Games (MIG 2016). 49--54.
[51]
David S. Malkus and Elwood T. Olsen. 1984. Obtaining error estimates for optimally constrained incompressible finite elements. Computer Methods in Applied Mechanics and Engineering 45, 1--3 (1984), 331–353.
[52]
Pierre-Luc Manteaux, Christopher Wojtan, Rahul Narain, Stéphane Redon, François Faure, and Marie-Paule Cani. 2017. Adaptive physically based models in computer graphics. Computer Graphics Forum 36, 6 (2017), 312–337.
[53]
Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011. Example-based elastic materials. ACM Transactions on Graphics (TOG) 30, 4, Article 72 (2011), 8 pages.
[54]
Aleka McAdams, Yongning Zhu, Andrew Selle, Mark Empey, Rasmus Tamstorf, Joseph Teran, and Eftychios Sifakis. 2011. Efficient elasticity for character skinning with contact and collisions. ACM Transactions on Graphics (TOG) 30, 4, Article 37 (2011), 12 pages.
[55]
Matthias Müller and Markus Gross. 2004. Interactive virtual materials. In Proceedings of Graphics Interface 2004. 239--246.
[56]
Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position based dynamics. Journal of Visual Communication and Image Representation 18, 2 (2007), 109--118.
[57]
Rahul Narain, Matthew Overby, and George E. Brown. 2016. ADMM⊇ projective dynamics: Fast simulation of general constitutive models. In Symposium on Computer Animation (SCA 2016). 21--28.
[58]
Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4 (2006), 809--836.
[59]
Matthieu Nesme, Paul G. Kry, Lenka Jeřábková, and François Faure. 2009. Preserving topology and elasticity for embedded deformable models. ACM Transactions on Graphics (TOG) 28, 3, Article 52 (2009), 9 pages.
[60]
Jorge Nocedal and Stephen Wright. 2006. Numerical Optimization. Springer.
[61]
Raymond W. Ogden. 1997. Non-linear Elastic Deformations. Courier Corporation.
[62]
Jakob T. Ostien, James W. Foulk, Alejandro Mota, and Michael Veilleux. 2016. A 10-node composite tetrahedral finite element for solid mechanics. International Journal for Numerical Methods in Engineering 107, 13 (2016), 1145--1170.
[63]
Eric G. Parker and James F. O’Brien. 2009. Real-time deformation and fracture in a game environment. In Proceedings of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2009). 165--175.
[64]
Taylor Patterson, Nathan Mitchell, and Eftychios Sifakis. 2012. Simulation of complex nonlinear elastic bodies using lattice deformers. ACM Transactions on Graphics (TOG) 31, 6, Article 197 (2012), 10 pages.
[65]
Alvaro G. Perez, Gabriel Cirio, Fernando Hernandez, Carlos Garre, and Miguel A. Otaduy. 2013. Strain limiting for soft finger contact simulation. In Proceedings of the 2013 World Haptics Conference (WHC). 79--84.
[66]
Samuel H. M. Roth. 2002. Bernstein-Bézier Representations for Facial Surgery Simulation. Ph.D. Dissertation.
[67]
Samuel H. M. Roth, Markus H. Gross, Silvio Turello, and Friedrich R. Carls. 1998. A Bernstein-Bézier based approach to soft tissue simulation. Computer Graphics Forum 17, 3 (1998), 285--294.
[68]
Yousef Saad. 2003. Iterative Methods for Sparse Linear Systems. Vol. 82. SIAM.
[69]
Robert L. Sani, Philip M. Gresho, Robert L. Lee, and David F. Griffiths. 1981. The cause and cure (?) of the spurious pressures generated by certain FEM solutions of the incompressible Navier-Stokes equations: Part 1. International Journal for Numerical Methods in Fluids 1, 1 (1981), 17--43.
[70]
Ruediger Schmedding and Matthias Teschner. 2008. Inversion handling for stable deformable modeling. The Visual Computer 24, 7 (2008), 625--633.
[71]
Teseo Schneider, Jérémie Dumas, Xifeng Gao, Denis Zorin, and Daniele Panozzo. 2019a. Polyfem. Retrieved from https://polyfem.github.io/.
[72]
Teseo Schneider, Yixin Hu, Xifeng Gao, Jeremie Dumas, Denis Zorin, and Daniele Panozzo. 2019b. A large scale comparison of tetrahedral and hexahedral elements for finite element analysis. arXiv preprint (2019).
[73]
Joachim Schöberl. 2009. NETGEN–4. X. RWTH Aachen University, Germany (2009).
[74]
Martin Servin, Claude Lacoursiere, and Niklas Melin. 2006. Interactive simulation of elastic deformable materials. In Proceedings of the 2006 Annual SIGRAD Conference; Special Theme: Computer Games.
[75]
Jonathan R. Shewchuk. 1994. An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Technical Report.
[76]
Hang Si. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Transactions on Mathematical Software 41, 2, Article 11 (2015), 36 pages.
[77]
Eftychios Sifakis and Jernej Barbic. 2012. FEM simulation of 3D deformable solids: A practitioner’s guide to theory, discretization and model reduction. In ACM SIGGRAPH 2012 Courses. Article 20, 50 pages.
[78]
David J. Silvester and Ronald W. Thatcher. 1986. The effect of the stability of mixed finite element approximations on the accuracy and rate of convergence of solution when solving incompressible flow problems. International Journal for Numerical Methods in Fluids 6, 11 (1986), 841--853.
[79]
Juan C. Simo and Robert L. Taylor. 1991. Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms. Computer Methods in Applied Mechanics and Engineering 85, 3 (1991), 273--310.
[80]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable neo-hookean flesh simulation. ACM Transactions on Graphics (TOG) 37, 2, Article 12 (2018), 15 pages.
[81]
Breannan Smith, Fernando De Goes, and Theodore Kim. 2019. Analytic eigensystems for isotropic distortion energies. ACM Transactions on Graphics (TOG) 38, 1, Article 3 (2019), 15 pages.
[82]
Alexey Stomakhin, Russell Howes, Craig Schroeder, and Joseph M. Teran. 2012. Energetically consistent invertible elasticity. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2012). 25--32.
[83]
Alexey Stomakhin, Craig Schroeder, Chenfanfu Jiang, Lawrence Chai, Joseph Teran, and Andrew Selle. 2014. Augmented MPM for phase-change and varied materials. ACM Transactions on Graphics (TOG) 33, 4, Article 138 (2014), 11 pages.
[84]
Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft body locomotion. ACM Transactions on Graphics (TOG) 31, 4, Article 26 (2012), 11 pages.
[85]
Joseph Teran, Sylvia Blemker, Victor Ng Thow Hing, and Ronald Fedkiw. 2003. Finite volume methods for the simulation of skeletal muscle. In Proceedings of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2003). 68--74.
[86]
Joseph Teran, Eftychios Sifakis, Geoffrey Irving, and Ronald Fedkiw. 2005. Robust quasistatic finite elements and flesh simulation. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA 2005).
[87]
Demetri Terzopoulos, John Platt, Alan Barr, and Kurt Fleischer. 1987. Elastically deformable models. In Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques, Vol. 21. 205--214.
[88]
Matthias Teschner, Bruno Heidelberger, Matthias Muller, and Markus Gross. 2004. A versatile and robust model for geometrically complex deformable solids. In Proceedings of the Computer Graphics International, 2004. 312--319.
[89]
Emanuel Todorov. 2014. Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in MuJoCo. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA). 6054--6061.
[90]
Maxime Tournier, Matthieu Nesme, Benjamin Gilles, and François Faure. 2015. Stable constrained dynamics. ACM Transactions on Graphics (TOG) 34, 4, Article 132 (2015), 10 pages.
[91]
Bohan Wang, George Matcuk, and Jernej Barbič. 2019. Hand modeling and simulation using stabilized magnetic resonance imaging. ACM Transactions on Graphics (TOG) 38, 4, Article 115 (2019), 14 pages.
[92]
Endong Wang, Qing Zhang, Bo Shen, Guangyong Zhang, Xiaowei Lu, Qing Wu, and Yajuan Wang. 2014. Intel math kernel library. In High-Performance Computing on the Intel® Xeon Phi. Springer, 167--188.
[93]
Huamin Wang, James O’Brien, and Ravi Ramamoorthi. 2010. Multi-resolution isotropic strain limiting. ACM Transactions on Graphics (TOG) 29, 6, Article 156 (2010), 10 pages.
[94]
Huamin Wang and Yin Yang. 2016. Descent methods for elastic body simulation on the GPU. ACM Transactions on Graphics (TOG) 35, 6, Article 212 (2016), 10 pages.
[95]
Daniel Weber, Thomas Kalbe, André Stork, Dieter Fellner, and Michael Goesele. 2011. Interactive deformable models with quadratic bases in Bernstein–Bézier-form. The Visual Computer 27, 6 (2011), 473--483.
[96]
Daniel Weber, Johannes Mueller-Roemer, Christian Altenhofen, André Stork, and Dieter Fellner. 2015. Deformation simulation using cubic finite elements and efficient p-multigrid methods. Computers & Graphics 53 (2015), 185--195.
[97]
Thomas Wihler. 2006. Locking-free adaptive discontinuous Galerkin FEM for linear elasticity problems. Mathematics of Computation 75, 255 (2006), 1087--1102.
[98]
Peter Wriggers. 2008. Nonlinear Finite Element Methods. Springer.
[99]
Hongyi Xu, Funshing Sin, Yufeng Zhu, and Jernej Barbič. 2015. Nonlinear material design using principal stretches. ACM Transactions on Graphics (TOG) 34, 4 (2015).
[100]
Yongning Zhu, Eftychios Sifakis, Joseph Teran, and Achi Brandt. 2010. An efficient multigrid method for the simulation of high-resolution elastic solids. ACM Transactions on Graphics (TOG) 29, 2, Article 16 (2010), 18 pages.
[101]
Olek C. Zienkiewicz, Robert L. Taylor, and Jian Z. Zhu. 2005. The Finite Element Method: Its Basis and Fundamentals. Elsevier.

Cited By

View all
  • (2024)Simulation of soft tissue deformation under physiological motion based on complementary dynamic methodComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2023.107851243:COnline publication date: 4-Mar-2024
  • (2024)High-order elements in position-based dynamicsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03467-340:7(4737-4749)Online publication date: 1-Jul-2024
  • (2023)Capturing Animation-Ready Isotropic Materials Using Systematic PokingACM Transactions on Graphics10.1145/361840642:6(1-27)Online publication date: 5-Dec-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 40, Issue 2
April 2021
174 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3454118
Issue’s Table of Contents
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the owner/author(s).

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 21 April 2021
Accepted: 01 December 2020
Revised: 01 October 2020
Received: 01 April 2020
Published in TOG Volume 40, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Finite element method (FEM)
  2. mixed FEM
  3. incompressible
  4. locking
  5. nonlinear materials
  6. constrained dynamics

Qualifiers

  • Research-article
  • Refereed

Funding Sources

  • European Union’s Horizon 2020 research and innovation programme under Marie Sklodowska-Curie

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)141
  • Downloads (Last 6 weeks)21
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Simulation of soft tissue deformation under physiological motion based on complementary dynamic methodComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2023.107851243:COnline publication date: 4-Mar-2024
  • (2024)High-order elements in position-based dynamicsThe Visual Computer: International Journal of Computer Graphics10.1007/s00371-024-03467-340:7(4737-4749)Online publication date: 1-Jul-2024
  • (2023)Capturing Animation-Ready Isotropic Materials Using Systematic PokingACM Transactions on Graphics10.1145/361840642:6(1-27)Online publication date: 5-Dec-2023
  • (2023)Efficient dynamic modeling of soft tissue deformation using a WSC-integrated order reduction methodJournal of Computational Science10.1016/j.jocs.2023.10208372(102083)Online publication date: Sep-2023
  • (2022)Hex-Mesh Generation and Processing: A SurveyACM Transactions on Graphics10.1145/355492042:2(1-44)Online publication date: 18-Oct-2022
  • (2022)HyperMSMComputer Methods and Programs in Biomedicine10.1016/j.cmpb.2022.106659216:COnline publication date: 1-Apr-2022
  • (2021)Volume Preserving Simulation of Soft Tissue with SkinProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/34801434:3(1-23)Online publication date: 27-Sep-2021

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media