Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
article
Free access

Relational queries over interpreted structures

Published: 01 July 2000 Publication History

Abstract

We rework parts of the classical relational theory when the underlying domain is a structure with some interpreted operations that can be used in queries. We identify parts of the classical theory that go through 'as before' when interpreted structure is present, parts that go through only for classes of nicely behaved structures, and parts that only arise in the interpreted case. The first category include a number of results on language equivalence and expressive power characterizations for the active-domain semantics for a variety of logics. Under this semantics, quantifiers range over elements of a relational database. The main kind of results we prove here are generic collapse results: for generic queries, adding operations beyond order, does not give us extra power.
The second category includes results on the natural semantics, under which quantifiers range over the entire interpreted structure. We prove, for a variety of structures, natural-active collapse results, showing that using unrestricted quantification does not give us any extra power. Moreover, for a variety of structures, including the real field, we give a set of algorithms for eliminating unbounded quantifications in favor of bounded ones. Furthermore, we extend these collapse results to a new class of higher-order logics that mix unbounded and bounded quantification. We give a set of normal forms for these logics, under special conditions on the interpreted structures. As a by-product, we obtain an elementary proof of the fact that parity test is not definable in the relational calculus with polynomial inequality constraints. We also give examples of structures with nice model-theoretic properties over which the natural-active collapse fails.

References

[1]
ABITEBOUL, S., HULL, R., AND VIANU, V. 1995. Foundations of Databases. Addison-Wesley, Reading, Mass.]]
[2]
ABITEBOUL, S., AND VIANU, V. 1991. Datalog extensions for database queries and updates. J. Comput. Syst. Ser. 43, 62-124.]]
[3]
AILAMAZYAN, A. K., GILULA, M. M., STOLBOUSHKIN, A. P., AND SHVARTS, G.F. 1986. Reduction of a relational model with infinite domains to the finite-domain case. Soy. Phys.-Doklady 31, 11-13.]]
[4]
BALDWIN, J., AND BENEDIKT, M. 1998. Embedded finite models, stability theory and the impact of order. In Proceedings of the 13th Annual Symposium on Logic in Computer Science, IEEE Computer Society Press, Los Alamitos, Calif., pp. 490-500.]]
[5]
BARRINGTON, D. A., IMMERMAN, N., AND STRAUBING, H. 1990. On uniformity within NC1. J. Comput. Syst. Sci. 41,274-306.]]
[6]
BASU, S. 1999. An improved algorithm for quantifier elimination over real closed fields. J. ACM 46.]]
[7]
BASU, S. 1997. Uniform quantifier elimination and constraint query processing. In Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation (ISSAC '97) (Maui, HI, July 21-23), ACM, New York, pp. 21-27.]]
[8]
BEERI, C., AND MILO, T. 1997. Comparison of functional and predicative query paradigms. J. Comput. Syst. Sci. 54, 3-33.]]
[9]
BELEGRADEK, 0., STOLBOUSHKIN, A., AND TAITSLIN, M. 1999. Extended order-generic queries. Ann. Pure Appl. Log. to appear.]]
[10]
BENEDIKT, M., DONG, G., LIBKIN, L., AND WONG, L. 1998. Relational expressive power of constraint query languages. J. ACM 45, 1 (Jan.), 1-34.]]
[11]
BENEDIKT, M., AND LIBKIN, L. 1996. On the structure of queries in constraint query languages. In Proceedings of the llth Symposium on Logic in Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 25-34.]]
[12]
BENEDIKT, M., AND LIBKIN, L. 1997. Languages for relational databases over interpreted structures. In Proceedings of the 16th ACM SIGACT-SIGMOD-SIGADT Symposium on Principles of Database Systems (Tucson, Az., May 12-14). ACM, New York, pp. 87-98.]]
[13]
BENEDIKT, M., AND LIBKIN, L. 1998. Safe constraint queries. In Proceedings of the 17th ACM SIGACT-SIGMOD-SIGADT Symposium on Principles of Database Systems (Seattle, Wash., June 1-3). ACM, New York, pp. 99-108.]]
[14]
BEN-OR, M., KOZEN, D., AND REIF, J. 1986. The complexity of elementary algebra and geometry. J. Comput. Syst. Sci. 32, 251-264.]]
[15]
BOPPANA, R. B., AND SIPSER, M. 1990. The complexity of finite functions. In Handbook of Theoretical Computer Science, Vol. A, Chap. 14, J. van Leeuwen, Ed. North-Holland, Amsterdam, The Netherlands.]]
[16]
CABIBBO, L., AND VAN DEN BUSSCHE, J. 1998. Converting untyped formulas to typed ones. Acta Inf. 35, 8, 637-643.]]
[17]
CHANDRA, A., AND HAREL, D. 1980. Computable queries for relational databases. J. Comput. Syst. Sci. 21, 2, 156-178.]]
[18]
CHANDRA, A., AND HAREL, D. 1982. Structure and complexity of relational queries. J. Comput. Syst. Sci. 25, 99-128.]]
[19]
CHANG, C. C., AND KEISLER, H.J. 1990. Model Theory. North Holland, Amsterdam, The Netherlands.]]
[20]
DAWAR, A., LINDELL, S., AND WEINSTEIN, S. 1996. First order logic, fixed point logic, and linear order. In Computer Science Logic '95. Lecture Notes in Computer Science, vol. 1092. Springer- Verlag, New York, pp. 161-177.]]
[21]
EBBINGHAUS, H.-D., AND FLUM, J. 1995. Finite Model Theory. Springer-Verlag, New York.]]
[22]
ESCOBAR-MOLANO, M., HULL, R., AND JACOBS, D. 1993. Safety and translation of calculus queries with scalar functions. In Proceedings of the 12th ACM SIGACT-SIGMOD-SIGADT Symposium on Principles of Database Systems (Washington, D.C., May 25-28). ACM, New York, pp. 253-264.]]
[23]
ETESSAMI, K. 1997. Counting quantifiers, successor relations, and logarithmic space. J. Comput. Syst. Sci. 54, 400-411.]]
[24]
FAGIN, R. 1976. Probabilities on finite models. J. Symb. Logic 41, 50-58.]]
[25]
FURST, M., SAXE, J., AND SIPSER, M. 1984. Parity, circuits, and the polynomial-time hierarchy. Math. Syst. Theory 17, 13-27.]]
[26]
GR~DEL, E., AND GUREVICH, Y. 1998. Metafinite model theory. Inf. Comput. 140, 26-81.]]
[27]
GRAHAM, R. L., ROTHSCHILD, B. L., AND SPENCER, J.H. 1990. Ramsey Theory. Wiley, New York.]]
[28]
GRUMBACH, S., AND SU, J. 1997a. Queries with arithmetical constraints. Theoret. Comput. Sci. 173, 151-181.]]
[29]
GRUMBACH, S., Su, J., AND TOLLU, C. 1994. Linear constraint databases. In Proceedings of Logic and Computer Complexity, 1994. Lecture Notes in Computer Science, vol. 960. Springer-Verlag, New York, pp. 426-446.]]
[30]
GRUMBACH, S., AND SU, J. 1997b. Finitely representable databases. J. Comput. Syst. Sci. 55, 273-298.]]
[31]
GUREVICH, Y., AND SHELAH, S. 1986. Fixed-point extensions of first-order logic. Ann. Pure Appl. Logic 32, 265-280.]]
[32]
HULL, R., AND SU, J. 1991. On the expressive power of databases with intermediate types. J. Comput. Syst. Sci. 43, 219-267.]]
[33]
HULL, R., AND SU, J. 1994. Domain independence and the relational calculus. Acta Inf. 31, 513-524.]]
[34]
IMMERMAN, N. 1986. Relational queries computable in polynomial time. Inf. Control 68, 86-104.]]
[35]
IMMERMAN, N. 1995. Descriptive complexity: A logician's approach to computation. Notices AMS 42, 1127-1133.]]
[36]
KANELLAKIS, P., KUPER, G., AND REVESZ, P. 1995. Constraint query languages. J. Comput. Syst. Sci. 51, 26-52.]]
[37]
KLUG, A. 1988. On conjunctive queries containing inequalities. J. ACM 35, 1 (Mar.), 146-160.]]
[38]
KOLAITIS, PH., AND VARDI, M. 1992. Infinitary logic and 0-1 laws. Inf. Comput. 98, 258-294.]]
[39]
KOLAITIS, PH., AND VARDI, M. 1990. 0-1 laws and decision problems for fragments of secondorder logic. Inf. Comput. 87, 302-338.]]
[40]
LIBKIN, L., AND WONG, L. 1997a. Query languages for bags and aggregate functions. J. Comput. Syst. Sci. 55, 241-272.]]
[41]
LIBKIN, L., AND WONG, L. 1997b. On the power of aggregation in relational query languages. In Proceedings of Database Programming Languages (DBPL'97). Lecture Notes in Computer Science, vol. 1369. Springer-Verlag, New York, pp. 260-280.]]
[42]
MOSCHOVAKIS, Y. 1974. Elementary Induction on Abstract Structures. North-Holland, Amsterdam, The Netherlands.]]
[43]
OTTO, M., AND VAN DEN BUSSCHE, J. 1996. First-order queries on databases embedded in an infinite structure. Inf. Proc. Lett. 60, 37-41.]]
[44]
PARBERRY, I., AND SCHNITGER, G. 1988. Parallel computation and threshold functions. J. Comput. Syst. Sci. 36, 278-302.]]
[45]
PAREDAENS, J., VAN DEN BUSSCHE, J., AND VAN GUCHT, D. 1998. First-order queries on finite structures over the reals. SIAM J. Comput. 27, 6, 1747-1763.]]
[46]
PILLAY, A., AND STEINHORN, C. 1988. Definable sets in ordered structures. III. Trans. AMS 309, 469-476.]]
[47]
STOLBOUSHKIN, A. P., AND TAITSLIN, M.A. 1996. Linear vs. order constraint queries over rational databases. In Proceedings of the 15th ACM SIGACT-SIGMOD-SIGADT Symposium on Principles of Database Systems (Montreal, Que., Canada, June 3-5). ACM, New York, pp. 17-27.]]
[48]
TARSKI, A. 1951. A Decision Method for Elementary Algebra and Geometry. 2nd ed. University of California Press.]]
[49]
ULLMAN, J.D. 1989. Principles of Database and Knowledgebase Systems, Vol. I. Computer Science Press.]]
[50]
VAN DEN DRIES, L. 1998. Tame Topology and O-minimal Structures. Cambridge.]]
[51]
VAN DER MEYDEN, R. 1997. The complexity of querying indefinite data about linearly ordered domains. J. Comput. Syst. Sci. 54, 1, 113-135.]]
[52]
VARDI, M. Y. 1982. The complexity of relational query languages. In Proceedings of the 14th Annual ACM Symposium on Theory of Computing (San Francisco, Calif., May 5-7). ACM, New York, pp. 137-146.]]
[53]
VARDI, M.Y. 1995. On the complexity of bounded-variable queries. In Proceedings of the 14th ACM SIGACT-SIGMOD-SIGADT Symposium on Principles of Database Systems (San Jose, Calif., May 22-26). ACM, New York, pp. 266-276.]]
[54]
WILKIE, A. J. 1996. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function. J. A. M. S. 9, 1051-1094.]]

Cited By

View all

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 47, Issue 4
July 2000
238 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/347476
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 July 2000
Published in JACM Volume 47, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. 0-minimality
  2. collapse results
  3. constraints
  4. quantifier elimination
  5. relational calculus

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)68
  • Downloads (Last 6 weeks)7
Reflects downloads up to 30 Aug 2024

Other Metrics

Citations

Cited By

View all
  • (2023)Embedded Finite Models beyond Restricted Quantifier Collapse2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)10.1109/LICS56636.2023.10175804(1-13)Online publication date: 26-Jun-2023
  • (2022)Data Path Queries over Embedded Graph DatabasesProceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems10.1145/3517804.3524159(189-201)Online publication date: 12-Jun-2022
  • (2022)The Past and Future of Embedded Finite Model TheoryReachability Problems10.1007/978-3-031-19135-0_3(37-46)Online publication date: 17-Oct-2022
  • (2019)On the Expressive Power of Logics on Constraint Databases with Complex ObjectsJournal of Computer Science and Technology10.1007/s11390-019-1943-734:4(795-817)Online publication date: 19-Jul-2019
  • (2018)Constraint Query LanguagesEncyclopedia of Database Systems10.1007/978-1-4614-8265-9_1240(586-591)Online publication date: 7-Dec-2018
  • (2017)Constraint Query LanguagesEncyclopedia of Database Systems10.1007/978-1-4899-7993-3_1240-2(1-5)Online publication date: 10-Apr-2017
  • (2015)Distributed Geographic Structure Query Language-DGSQLJournal of Software Engineering10.3923/jse.2015.328.3369:2(328-336)Online publication date: 1-Feb-2015
  • (2012)Non-definability of Languages by Generalized First-order Formulas over (N,+)Proceedings of the 2012 27th Annual IEEE/ACM Symposium on Logic in Computer Science10.1109/LICS.2012.55(451-460)Online publication date: 25-Jun-2012
  • (2011)Expressive power of query languages for constraint complex value databasesProceedings of the 16th international conference on Database systems for advanced applications: Part II10.5555/1997251.1997270(195-209)Online publication date: 22-Apr-2011
  • (2011)Expressive Power of Query Languages for Constraint Complex Value DatabasesDatabase Systems for Advanced Applications10.1007/978-3-642-20152-3_15(195-209)Online publication date: 2011
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media