Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
survey

A Comprehensive Taxonomy of Dynamic Texture Representation

Published: 23 November 2021 Publication History

Abstract

Representing dynamic textures (DTs) plays an important role in many real implementations in the computer vision community. Due to the turbulent and non-directional motions of DTs along with the negative impacts of different factors (e.g., environmental changes, noise, illumination, etc.), efficiently analyzing DTs has raised considerable challenges for the state-of-the-art approaches. For 20 years, many different techniques have been introduced to handle the above well-known issues for enhancing the performance. Those methods have shown valuable contributions, but the problems have been incompletely dealt with, particularly recognizing DTs on large-scale datasets. In this article, we present a comprehensive taxonomy of DT representation in order to purposefully give a thorough overview of the existing methods along with overall evaluations of their obtained performances. Accordingly, we arrange the methods into six canonical categories. Each of them is then taken in a brief presentation of its principal methodology stream and various related variants. The effectiveness levels of the state-of-the-art methods are then investigated and thoroughly discussed with respect to quantitative and qualitative evaluations in classifying DTs on benchmark datasets. Finally, we point out several potential applications and the remaining challenges that should be addressed in further directions. In comparison with two existing shallow DT surveys (i.e., the first one is out of date as it was made in 2005, while the newer one (published in 2016) is an inadequate overview), we believe that our proposed comprehensive taxonomy not only provides a better view of DT representation for the target readers but also stimulates future research activities.

References

[1]
Michal Aharon, Michael Elad, and Alfred M. Bruckstein. 2006. K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54, 11 (2006), 4311–4322.
[2]
Mohammad Alkhatib and Adel Hafiane. 2019. Robust adaptive median binary pattern for noisy texture classification and retrieval. IEEE Transactions on Image Processing 28, 11 (2019), 5407–5418.
[3]
C. Allain and M. Cloitre. 1991. Characterizing the lacunarity of random and deterministic fractal sets. Physical Review A 44 (1991), 3552–3558.
[4]
Amit, Balasubramanian Raman, and Debanjan Sadhya. 2020. Dynamic texture recognition using local tetra pattern - three orthogonal planes (LTrP-TOP). Visual Computer 36, 3 (2020), 579–592.
[5]
Vincent Andrearczyk and Paul F. Whelan. 2018. Convolutional neural network on three orthogonal planes for dynamic texture classification. Pattern Recognition 76 (2018), 36–49.
[6]
Shervin Rahimzadeh Arashloo. 2019. Sparse binarised statistical dynamic features for spatio-temporal texture analysis. Signal Image Video Processing 13, 3 (2019), 575–582.
[7]
S. R. Arashloo, M. C. Amirani, and A. Noroozi. 2017. Dynamic texture representation using a deep multi-scale convolutional network. Journal of Visual Communication and Image Representation 43 (2017), 89–97.
[8]
Shervin Rahimzadeh Arashloo and Josef Kittler. 2014. Dynamic texture recognition using multiscale binarized statistical image features. IEEE Transactions on Multimedia 16, 8 (2014), 2099–2109.
[9]
Selen Ayas, Esra Tunc Gormus, and Murat Ekinci. 2018. An efficient pan sharpening via texture based dictionary learning and sparse representation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11, 7 (2018), 2448–2460.
[10]
André Ricardo Backes. 2017. Upper and lower volumetric fractal descriptors for texture classification. Pattern Recognition Letters 92 (2017), 9–16.
[11]
Mahsa Baktashmotlagh, Mehrtash Tafazzoli Harandi, Abbas Bigdeli, Brian C. Lovell, and Mathieu Salzmann. 2013. Non-linear stationary subspace analysis with application to video classification. In ICML. 450–458.
[12]
M. Baktashmotlagh, M. T. Harandi, B. C. Lovell, and M. Salzmann. 2014. Discriminative non-linear stationary subspace analysis for video classification. IEEE Trans. Pattern Anal. Mach. Intell. 36, 12 (2014), 2353–2366.
[13]
P. Barmpoutis, K. Dimitropoulos, and N. Grammalidis. 2014. Smoke detection using spatio-temporal analysis, motion modeling and dynamic texture recognition. In EUSIPCO. 1078–1082.
[14]
John L. Barron, David J. Fleet, and Steven S. Beauchemin. 1994. Performance of optical flow techniques. International Journal of Computer Vision 12, 1 (1994), 43–77.
[15]
Leonard E. Baum and Ted Petrie. 1966. Statistical inference for probabilistic functions of finite state Markov chains. Annals of Mathematical Statistics 37, 6 (12 1966), 1554–1563.
[16]
Julian Besag. 1986. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society. Series B (Methodological) 48, 3 (1986), 259–302.
[17]
B. E. Boser, I. Guyon, and V. Vapnik. 1992. A training algorithm for optimal margin classifiers. In COLT. 144–152.
[18]
Azzedine Boukerche, Abdul Jabbar Siddiqui, and Abdelhamid Mammeri. 2017. Automated vehicle detection and classification: Models, methods, and techniques. ACM Comput. Surv. 50, 5 (2017), 62:1–62:39.
[19]
Patrick Bouthemy and Ronan Fablet. 1998. Motion characterization from temporal cooccurrences of local motion-based measures for video indexing. In ICPR. 905–908.
[20]
S. P. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. 2011. Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3, 1 (2011), 1–122.
[21]
Joan Bruna and Stéphane Mallat. 2013. Invariant scattering convolution Networks. IEEE Trans. Pattern Anal. Mach. Intell. 35, 8 (2013), 1872–1886.
[22]
Paul Von Bünau, Frank C. Meinecke, Franz C. Király, and Klaus Robert Müller. 2009. Finding stationary subspaces in multivariate time series. Physical Review Letters 103, 21 (2009), 214101. DOI:https://doi.org/10.1103/PhysRevLett.103.214101
[23]
Antoni B. Chan and Nuno Vasconcelos. 2005. Probabilistic kernels for the classification of auto-regressive visual processes. In CVPR. 846–851.
[24]
Antoni B. Chan and Nuno Vasconcelos. 2007. Classifying video with kernel dynamic textures. In CVPR. 1–6.
[25]
Antoni B. Chan and Nuno Vasconcelos. 2008. Modeling, clustering, and segmenting video with mixtures of dynamic textures. IEEE Transactions on Pattern Analysis and Machine Intelligence 30, 5 (2008), 909–926.
[26]
Tsung-Han Chan, Kui Jia, Shenghua Gao, Jiwen Lu, Zinan Zeng, and Yi Ma. 2015. PCANet: A simple deep learning baseline for image classification?IEEE Transactions on Image Processing 24, 12 (2015), 5017–5032.
[27]
Chih-Chung Chang and Chih-Jen Lin. 2011. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology 2, 3 (2011), 27:1–27:27.
[28]
Jie Chen, Shiguang Shan, Chu He, Guoying Zhao, Matti Pietikäinen, Xilin Chen, and Wen Gao. 2010. WLD: A robust local image descriptor. IEEE Transactions on Pattern Analysis and Machine Intelligence 32, 9 (2010), 1705–1720.
[29]
Jie Chen, Guoying Zhao, Mikko Salo, Esa Rahtu, and Matti Pietikäinen. 2013. Automatic dynamic texture segmentation using local descriptors and optical flow. IEEE Transactions on Image Processing 22, 1 (2013), 326–339.
[30]
K. Chen, J. Zheng, J. Cai, and J. Zhang. 2020. Modeling caricature expressions by 3D blendshape and dynamic texture. In ACM International Conference on Multimedia. ACM, 3228–3236.
[31]
Dmitry Chetverikov. 2000. Pattern regularity as a visual key. Image and Vision Computing 18, 12 (2000), 975–985.
[32]
D. Chetverikov, S. Fazekas, and M. Haindl. 2011. Dynamic texture as foreground and background. Machine Vision and Applications 22, 5 (2011), 741–750.
[33]
Dmitry Chetverikov and Renaud Péteri. 2005. A brief survey of dynamic texture description and recognition. In CORES. 17–26.
[34]
W. Ching, Eric S. Fung, and Michael K. Ng. 2002. A multivariate Markov chain model for categorical data sequences and its applications in demand predictions. IMA Journal of Management Mathematics 13, 3 (2002), 187–199.
[35]
Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, and Andrea Vedaldi. 2016. Deep filter banks for texture recognition, description, and segmentation. Int. J. Comput. Vis. 118, 1 (2016), 65–94.
[36]
Marianna Clark, Alan C. Bovik, and Wilson S. Geisler. 1987. Texture segmentation using Gabor modulation/demodulation. Pattern Recognit. Lett. 6, 4 (1987), 261–267.
[37]
Adam Coates and Andrew Y. Ng. 2012. Learning feature representations with k-means. In Neural Networks: Tricks of the Trade - Second Edition. 561–580.
[38]
James M. Coggins and Anil K. Jain. 1985. A spatial filtering approach to texture analysis. Pattern Recognit. Lett. 3, 3 (1985), 195–203.
[39]
Cesar H. Comin, Mateus P. Viana, Lucas Antiqueira, and Luciano da F. Costa. 2014. Random walks in directed modular networks. Journal of Statistical Mechanics: Theory and Experiment 2014, 12 (2014), P12003.
[40]
Corinna Cortes and Vladimir Vapnik. 1995. Support-vector Networks. Machine Learning 20, 3 (1995), 273–297.
[41]
L. N. Couto and C. A. Z. Barcelos. 2018. Singular patterns in optical flows as dynamic texture descriptors. In CIARP, Vol. 11401. 351–358.
[42]
Trevor F. Cox and Michael A. A. Cox. 1968. Multidimensional Scaling. Chapman and Hall.
[43]
George R. Cross and Anil K. Jain. 1983. Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 5, 1 (1983), 25–39.
[44]
G. Csurka, C. Dance, L. Fan, J. Willamowski, and C. Bray. 2004. Visual categorization with bags of keypoints. In ECCV Workshop.
[45]
Dubravko Culibrk and Nicu Sebe. 2014. Temporal dropout of changes approach to convolutional learning of spatio-temporal features. In ACM International Conference on Multimedia. 1201–1204.
[46]
Navneet Dalal and Bill Triggs. 2005. Histograms of oriented gradients for human detection. In CVPR. 886–893.
[47]
Virgílio de Melo Langoni and Adilson Gonzaga. 2020. Evaluating dynamic texture descriptors to recognize human iris in video image sequence. Pattern Anal. Appl. 23, 2 (2020), 771–784.
[48]
Konstantinos G. Derpanis, Matthieu Lecce, Kostas Daniilidis, and Richard P. Wildes. 2012. Dynamic scene understanding: The role of orientation features in space and time in scene classification. In CVPR. 1306–1313.
[49]
Konstantinos G. Derpanis and Richard P. Wildes. 2010. Dynamic texture recognition based on distributions of spacetime oriented structure. In CVPR. 191–198.
[50]
K. G. Derpanis and R. P. Wildes. 2012. Spacetime texture representation and recognition based on a spatiotemporal orientation analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence 34, 6 (2012), 1193–1205.
[51]
David L. Donoho and Mark R. Duncan. 2000. Digital curvelet transform: Strategy, implementation, and experiments. In Wavelet Applications VII, Vol. 4056. 12–30.
[52]
Gianfranco Doretto, Alessandro Chiuso, Ying Nian Wu, and Stefano Soatto. 2003. Dynamic textures. International Journal of Computer Vision 51, 2 (2003), 91–109.
[53]
G. Doretto, E. Jones, and S. Soatto. 2004. Spatially homogeneous dynamic textures. In ECCV. 591–602.
[54]
J. M. Hans du Buf and Peter Heitkämper. 1991. Texture features based on gabor phase. Signal Process. 23, 3 (1991), 227–244.
[55]
Sloven Dubois, Renaud Péteri, and Michel Ménard. 2009. A comparison of wavelet based spatio-temporal decomposition methods for dynamic texture recognition. In IbPRIA. 314–321.
[56]
S. Dubois, R. Péteri, and M. Ménard. 2015. Characterization and recognition of dynamic textures based on the 2D+T curvelet transform. Signal, Image and Video Processing 9, 4 (2015), 819–830.
[57]
Dennis F. Dunn, William E. Higgins, and Joseph Wakeley. 1994. Texture segmentation using 2-D Gabor elementary functions. IEEE Trans. Pattern Anal. Mach. Intell. 16, 2 (1994), 130–149.
[58]
P. Erdös and A. Rényi. 1959. On random graphs I. Publicationes Mathematicae 6 (1959), 290–297.
[59]
Ronan Fablet and Patrick Bouthemy. 2001. Motion recognition using spatio-temporal random walks in sequence of 2D motion-related measurements. In ICIP. 652–655.
[60]
R. Fablet and P. Bouthemy. 2003. Motion recognition using nonparametric image motion models estimated from temporal and multiscale cooccurrence statistics. IEEE Trans. Pattern Anal. Mach. Intell. 25, 12 (2003), 1619–1624.
[61]
Kuo-Chin Fan and Tsung-Yung Hung. 2014. A novel local pattern descriptor - local vector pattern in high-order derivative space for face recognition. IEEE Transactions on Image Processing 23, 7 (2014), 2877–2891.
[62]
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. 2008. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research 9 (2008), 1871–1874.
[63]
Abdolhossein Fathi and Ahmad Reza Naghsh-Nilchi. 2012. Noise tolerant local binary pattern operator for efficient texture analysis. Pattern Recognition Letters 33, 9 (2012), 1093–1100.
[64]
Christoph Feichtenhofer, Axel Pinz, and Richard P. Wildes. 2017. Temporal residual networks for dynamic scene recognition. In CVPR. 7435–7444.
[65]
R. A. Fisher. 1936. The use of multiple measurements in taxonomic problems. Annals of Eugenics 7, 2 (1936), 179–188.
[66]
E. Fix and J. L. Hodges. 1951. Discriminatory Analysis, Nonparametric Discrimination: Consistency Properties. Technical Report 4. USAF School of Aviation Medicine, Randolph Field.
[67]
Andrew M. Fraser and Harry L. Swinney. 1986. Independent coordinates for strange attractors from mutual information. Physical Review A 33 (1986), 1134–1140.
[68]
B. J. Frey and D. Dueck. 2007. Clustering by passing messages between data points. Science 315, 5814 (2007), 972–976.
[69]
Erol Gelenbe. 1989. Random neural networks with negative and positive signals and product form solution. Neural Computation 1, 4 (1989), 502–510.
[70]
Tony Van Gestel, Johan A. K. Suykens, Paul Van Dooren, and Bart De Moor. 2001. Identification of stable models in subspace identification by using regularization. IEEE Trans. Automat. Control 46, 9 (2001), 1416–1420.
[71]
Bernard Ghanem and Narendra Ahuja. 2010. Maximum margin distance learning for dynamic texture recognition. In ECCV. 223–236.
[72]
Bernard Ghanem and Narendra Ahuja. 2010. Sparse coding of linear dynamical systems with an application to dynamic texture recognition. In ICPR. 987–990.
[73]
Wesley Nunes Gonçalves, Núbia Rosa da Silva, Luciano da Fontoura Costa, and Odemir Martinez Bruno. 2016. Texture recognition based on diffusion in networks. Information Sciences 364–365 (2016), 51–71.
[74]
Wesley Nunes Gonçalves, Bruno Brandoli Machado, and Odemir Martinez Bruno. 2015. A complex network approach for dynamic texture recognition. Neurocomputing 153 (2015), 211–220.
[75]
P. Grassberger and I. Procaccia. 1983. Characterization of strange attractors. Phys. Rev. Lett. 50 (1983), 346–349.
[76]
Zhenhua Guo, Xingzheng Wang, Jie Zhou, and Jane You. 2016. Robust texture image representation by scale selective local binary patterns. IEEE Transactions on Image Processing 25, 2 (2016), 687–699.
[77]
Zhenhua Guo, Lei Zhang, and David Zhang. 2010. A completed modeling of local binary pattern operator for texture classification. IEEE Transactions on Image Processing 19, 6 (2010), 1657–1663.
[78]
Isma Hadji and Richard P. Wildes. 2017. A spatiotemporal oriented energy network for dynamic texture recognition. In ICCV. 3085–3093.
[79]
Isma Hadji and Richard P. Wildes. 2018. A new large scale dynamic texture dataset with application to convnet understanding. In ECCV. 334–351.
[80]
Efstathios Hadjidemetriou, Michael D. Grossberg, and Shree K. Nayar. 2004. Multiresolution histograms and their use for recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 7 (2004), 831–847.
[81]
Michal Haindl and Radek Richtr. 2013. Dynamic texture enlargement. In SCCG. ACM, 5–12.
[82]
F. Hajati, M. Tavakolian, S. Gheisari, Y. Gao, and A. S. Mian. 2017. Dynamic texture comparison using derivative sparse representation: Application to video-based face recognition. Trans. Hum. Mach. Syst. 47, 6 (2017), 970–982.
[83]
S. Hara, Y. Kawahara, T. Washio, P. von Bünau, T. Tokunaga, and K. Yumoto. 2012. Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks 33 (2012), 7–20.
[84]
M. T. Harandi, R. I. Hartley, C. Shen, B. C. Lovell, and C. Sanderson. 2015. Extrinsic methods for coding and dictionary learning on Grassmann manifolds. International Journal of Computer Vision 114, 2–3 (2015), 113–136.
[85]
Dong-Chen He and Li Wang. 1991. Textural filters based on the texture spectrum. Pattern Recognit. 24, 12 (1991), 1187–1195.
[86]
K. He, X. Zhang, S. Ren, and J. Sun. 2016. Deep residual learning for image recognition. In CVPR. 770–778.
[87]
Glenn Healey. 1998. Using Zernike moments for the illumination and geometry invariant classification of multispectral texture. IEEE Trans. Image Process. 7, 2 (1998), 196–203.
[88]
Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. 2006. A fast learning algorithm for deep belief nets. Neural Computation 18, 7 (2006), 1527–1554.
[89]
Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2012. Improving neural networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580 (2012).
[90]
Sungeun Hong, Jongbin Ryu, Woobin Im, and Hyun Seung Yang. 2018. D3: Recognizing dynamic scenes with deep dual descriptor based on key frames and key segments. Neurocomputing 273 (2018), 611–621.
[91]
Sungeun Hong, Jongbin Ryu, and Hyun Seung Yang. 2018. Not all frames are equal: Aggregating salient features for dynamic texture classification. Multidimensional Systems and Signal Processing 29, 1 (2018), 279–298.
[92]
B. K. P. Horn and B. G. Schunck. 1981. Determining optical flow. Artificial Intelligence 17, 1–3 (1981), 185–203.
[93]
Guang-Bin Huang, Qin-Yu Zhu, and Chee Kheong Siew. 2006. Extreme learning machine: Theory and applications. Neurocomputing 70, 1–3 (2006), 489–501.
[94]
Aapo Hyvärinen, Jarmo Hurri, and Patrik O Hoyer. 2009. Natural Image Statistics: A Probabilistic Approach to Early Computational Vision. Springer.
[95]
Anil K. Jain. 1989. Fundamentals of Digital Signal Processing. Prentice-Hall, Englewood Cliffs, NJ.
[96]
Ylva Jansson and Tony Lindeberg. 2018. Dynamic texture recognition using time-causal and time-recursive spatio-temporal receptive fields. Journal of Mathematical Imaging and Vision 60, 9 (2018), 1369–1398.
[97]
H. Ji, X. Yang, H. Ling, and Y. Xu. 2013. Wavelet domain multifractal analysis for static and dynamic texture classification. IEEE Transactions on Image Processing 22, 1 (2013), 286–299.
[98]
Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 2013. 3D convolutional neural networks for human action recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 1 (2013), 221–231.
[99]
Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. B. Girshick, S. Guadarrama, and T. Darrell. 2014. Caffe: Convolutional architecture for fast feature embedding. In ACM International Conference on Multimedia. 675–678.
[100]
N. Jiang, J. Xu, W. Yu, and S. Goto. 2013. Gradient local binary patterns for human detection. In ISCAS. 978–981.
[101]
W. B. Johnson and J. Lindenstrauss. 1984. Extensions of Lipschitz mappings into a hilbert space. In Conference on Modern Analysis and Probability. 189–206.
[102]
Vin de Silva Joshua B. Tenenbaum and John C. Langford. 2000. A global geometric framework for nonlinear dimensionality reduction. Science 290, 5500 (2000), 2319.
[103]
Juho Kannala and Esa Rahtu. 2012. BSIF: Binarized statistical image features. In ICPR. 1363–1366.
[104]
Holger Kantz and Thomas Schreiber. 2003. Nonlinear Time Series Analysis. Cambridge University Press.
[105]
Leonard Kaufman and Peter J. Rousseeuw. 1990. Finding Groups in Data: An Introduction to Cluster Analysis. Wiley.
[106]
Matthew B. Kennel, Reggie Brown, and Henry D. I. Abarbanel. 1992. Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A 45, 6 (1992), 3403–3411.
[107]
N. Kingsbury. 1998. The dual-tree complex wavelet transform: A new technique for shift invariance and directional filters. In IEEE DSP Workshop.
[108]
Russell A. Kirsch. 1971. Computer determination of the constituent structure of biological images. Computers and Biomedical Research 4, 3 (1971), 315–328.
[109]
Mina Koleini, Mohammad Reza Ahmadzadeh, and Saeed Sadri. 2014. A new efficient method to characterize dynamic textures based on a two-phase texture and dynamism analysis. Pattern Recognition Letters 45 (2014), 217–225.
[110]
Mina Koleini, Mohammad Reza Ahmadzadeh, and Saeed Sadri. 2017. A new efficient feature-combination-based method for dynamic texture modeling and classification using semi-random starting parameter dynamic Bayesian networks. Multimedia Tools and Applications 76, 14 (2017), 15251–15278.
[111]
Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet classification with deep convolutional neural networks. In NIPS. 1106–1114.
[112]
Solomon Kullback. 1968. Information Theory and Statistics. Dover Publications, New York.
[113]
Vivek Kwatra, Arno Schödl, Irfan A. Essa, Greg Turk, and Aaron F. Bobick. 2003. Graphcut textures: Image and video synthesis using graph cuts. ACM Transactions on Graphics 22, 3 (2003), 277–286.
[114]
Ivan Laptev. 2005. On space-time interest points. International Journal of Computer Vision 64, 2–3 (2005), 107–123.
[115]
B. Lashermes, S. Jaffard, and P. Abry. 2005. Wavelet leader based multifractal analysis. In ICASSP. 161–164.
[116]
Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hubbard, and L. D. Jackel. 1989. Backpropagation applied to handwritten zip code recognition. Neural Computation 1, 4 (1989), 541–551.
[117]
Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner.1998. Gradient-based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–2324.
[118]
Thomas K. Leung and Jitendra Malik. 2001. Representing and recognizing the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 43, 1 (2001), 29–44.
[119]
Yurong Li. 2020. Fractal dimension estimation for color texture images. J. Math. Imaging Vis. 62, 1 (2020), 37–53.
[120]
Gilson F. Lima, Alexandre S. Martinez, and Osame Kinouchi. 2001. Deterministic walks in random media. Physical Review Letters 87 (2001), 010603.
[121]
G. Lin, Y. Zhang, Q. Zhang, Y. Jia, G. Xu, and J. Wang. 2017. Smoke detection in video sequences based on dynamic texture using volume local binary patterns. KSII Trans. Internet Inf. Syst. 11, 11 (2017), 5522–5536.
[122]
Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. 2015. Bilinear CNN models for fine-grained visual recognition. In ICCV. IEEE Computer Society, 1449–1457.
[123]
Tony Lindeberg. 2016. Time-causal and time-recursive spatio-temporal receptive fields. Journal of Mathematical Imaging and Vision 55, 1 (2016), 50–88.
[124]
Fan Liu, Zhenmin Tang, and Jinhui Tang. 2013. WLBP: Weber local binary pattern for local image description. Neurocomputing 120 (2013), 325–335.
[125]
G. Liu, G. Xia, W. Yang, and L. Zhang. 2014. Texture analysis with shape co-occurrence patterns. In ICPR. 1627–1632.
[126]
L. Liu, J. Chen, P. W. Fieguth, G. Zhao, R. Chellappa, and M. Pietikäinen. 2019. From BoW to CNN: Two decades of texture representation for texture classification. International Journal of Computer Vision 127, 1 (2019), 74–109.
[127]
Li Liu, Paul W. Fieguth, Yulan Guo, Xiaogang Wang, and Matti Pietikäinen. 2017. Local binary features for texture classification: Taxonomy and experimental study. Pattern Recognition 62 (2017), 135–160.
[128]
Li Liu, Songyang Lao, Paul W. Fieguth, Yulan Guo, Xiaogang Wang, and Matti Pietikäinen. 2016. Median robust extended local binary pattern for texture classification. IEEE Transactions on Image Processing 25, 3 (2016), 1368–1381.
[129]
Qiufei Liu, Xiaoyong Men, Yulong Qiao, Bingye Liu, Jiayuan Liu, and Qiuxia Liu. 2018. Dynamic texture classification with relative phase information in the complex wavelet domain. In ICGEC. 641–651.
[130]
Wei Liu and Eraldo Ribeiro. 2012. Detecting singular patterns in 2D vector fields using weighted Laurent polynomial. Pattern Recognition 45, 11 (2012), 3912–3925.
[131]
David G. Lowe. 2004. Distinctive image features from scale-invariant keypoints. IJCV 60, 2 (2004), 91–110.
[132]
Zongqing Lu, Weixin Xie, Jihong Pei, and Jianjun Huang. 2005. Dynamic texture recognition by spatio-temporal multiresolution histograms. In WACV/MOTION. 241–246.
[133]
Xin-Bin Luo, Shan Fu, and Yong Wang. 2015. Chaotic features for dynamic textures recognition with group sparsity representation. KSII Transactions on Internet and Information Systems 9, 11 (2015), 4556–4572.
[134]
Stéphane Mallat. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 11, 7 (1989), 674–693.
[135]
Benoit Mandelbrot. 1977. Fractal Geometry of Nature. W. H. Freeman.
[136]
D. G. Manolakis, V. K. Ingle, and S. M. Kogon. 2000. Statistical and Adaptive Signal Processing. McGraw-Hill, Boston.
[137]
Richard J. Martin. 2000. A metric for ARMA processes. IEEE Transactions on Signal Processing 48, 4 (2000), 1164–1170.
[138]
Torsten Mattfeldt. 2003. Classification of binary spatial textures using stochastic geometry, nonlinear deterministic analysis and artificial neural networks. Int. J. Pattern Recognit. Artif. Intell. 17, 2 (2003), 275–300.
[139]
Warren Mcculloch and Walter Pitts. 1943. A logical calculus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5 (1943), 127–147.
[140]
Albert A. Michelson. 1927. Studies in Optics. University of Chicago Press.
[141]
A. Mumtaz, E. Coviello, G. R. G. Lanckriet, and A. B. Chan. 2013. Clustering dynamic textures with the hierarchical EM algorithm for modeling video. IEEE Trans. Pattern Anal. Mach. Intell. 35, 7 (2013), 1606–1621.
[142]
A. Mumtaz, E. Coviello, G. R. G. Lanckriet, and A. B. Chan. 2015. A scalable and accurate descriptor for dynamic textures using bag of system trees. IEEE Trans. Pattern Anal. Mach. Intell. 37, 4 (2015), 697–712.
[143]
Subrahmanyam Murala, R. P. Maheshwari, and R. Balasubramanian. 2012. Local tetra patterns: A new feature descriptor for content-based image retrieval. IEEE Transactions on Image Processing 21, 5 (2012), 2874–2886.
[144]
J. F. Muzy, E. Bacryand, and A. Arneodo. 1991. Wavelets and multifractal formalism for singular signals: Application to turbulence data. Physical Review Letters 67 (1991), 3515–3518.
[145]
M. R. Naphade, C. Lin, and J. R. Smith. 2002. Video texture indexing using spatio-temporal wavelets. In ICIP. 437–440.
[146]
Randal C. Nelson and Ramprasad Polana. 1992. Qualitative recognition of motion using temporal texture. CVGIP: Image Understanding 56, 1 (1992), 78–89.
[147]
J. Ngiam, P. W. Koh, Z. Chen, S. A. Bhaskar, and A. Y. Ng. 2011. Sparse filtering. In NIPS. 1125–1133.
[148]
Thanh Minh Nguyen and Q. M. Jonathan Wu. 2016. Multi-view dynamic texture learning. In WACV. 1–9.
[149]
T. P. Nguyen, A. Manzanera, M. Garrigues, and N.-S. Vu. 2014. Spatial motion patterns: Action models from semi-dense trajectories. International Journal of Pattern Recognition and Artificial Intelligence 28, 7 (2014), 1460011.
[150]
T. P. Nguyen, A. Manzanera, W. G. Kropatsch, and X. S. N’Guyen. 2016. Topological attribute patterns for texture recognition. Pattern Recognition Letters 80 (2016), 91–97.
[151]
T. P. Nguyen, N.-S. Vu, and A. Manzanera. 2016. Statistical binary patterns for rotational invariant texture classification. Neurocomputing 173 (2016), 1565–1577.
[152]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2017. Completed local structure patterns on three orthogonal planes for dynamic texture recognition. In IPTA. 1–6.
[153]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2018. Completed statistical adaptive patterns on three orthogonal planes for recognition of dynamic textures and scenes. Journal of Electronic Imaging 27, 5 (2018), 053044.
[154]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2019. Smooth-invariant gaussian features for dynamic texture recognition. In ICIP. 4400–4404.
[155]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2020. Directional dense-trajectory-based patterns for dynamic texture recognition. IET Computer Vision 14, 4 (2020), 162–176.
[156]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2020. Dynamic texture representation based on hierarchical local patterns. In ACIVS. 277–289.
[157]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2020. Rubik gaussian-based patterns for dynamic texture classification. Pattern Recognition Letters 135 (2020), 180–187.
[158]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2021. A novel filtering kernel based on difference of derivative Gaussians with applications to dynamic texture representation. Signal Processing: Image Communication 98 (2021), 116394.
[159]
T. T. Nguyen, T. P. Nguyen, and F. Bouchara. 2021. Prominent local representation for dynamic textures based on high-order Gaussian-gradients. IEEE Trans. Multim. 23 (2021), 1367–1382.
[160]
T. T. Nguyen, T. P. Nguyen, F. Bouchara, and X. S. Nguyen. 2018. Directional beams of dense trajectories for dynamic texture recognition. In ACIVS. 74–86.
[161]
T. T. Nguyen, T. P. Nguyen, F. Bouchara, and X. S. Nguyen. 2020. Momental directional patterns for dynamic texture recognition. Computer Vision and Image Understanding 194 (2020), 102882.
[162]
T. T. Nguyen, T. P. Nguyen, F. Bouchara, and N. S. Vu. 2019. Volumes of blurred-invariant Gaussians for dynamic texture classification. In CAIP. 155–167.
[163]
Xuan Son Nguyen, Thanh Phuong Nguyen, François Charpillet, and Ngoc-Son Vu. 2018. Local derivative pattern for action recognition in depth images. Multimedia Tools and Applications 77, 7 (2018), 8531–8549.
[164]
David Nistér and Henrik Stewénius. 2006. Scalable recognition with a vocabulary tree. In CVPR. 2161–2168.
[165]
T. Ojala, M. Pietikäinen, and T. Mäenpää. 2002. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24, 7 (2002), 971–987.
[166]
Kazuhiro Otsuka, Tsutomu Horikoshi, Satoshi Suzuki, and Masaharu Fujii. 1998. Feature extraction of temporal texture based on spatiotemporal motion trajectory. In ICPR. 1047–1051.
[167]
C.-H. Peh and L. F. Cheong. 2002. Synergizing spatial and temporal texture. IEEE Trans. IP 11, 10 (2002), 1179–1191.
[168]
H. Peng, F. Long, and C. H. Q. Ding. 2005. Feature selection based on mutual information: Criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 8 (2005), 1226–1238.
[169]
Jose A. Perea and Gunnar Carlsson. 2014. A Klein-bottle-based dictionary for texture representation. Int. J. Comput. Vis. 107, 1 (2014), 75–97.
[170]
Florent Perronnin, Jorge Sánchez, and Thomas Mensink. 2010. Improving the Fisher kernel for large-scale image classification. In ECCV. 143–156.
[171]
Renaud Péteri and Dmitry Chetverikov. 2004. Qualitative characterization of dynamic textures for video retrieval. In ICCVG. 33–38.
[172]
Renaud Péteri and Dmitry Chetverikov. 2005. Dynamic texture recognition using normal flow and texture regularity. In IbPRIA. 223–230.
[173]
R. Péteri, S. Fazekas, and M. J. Huiskes. 2010. DynTex: A comprehensive database of dynamic textures. Pattern Recognition Letters 31, 12 (2010), 1627–1632.
[174]
R. Polana and R. Nelson. 1997. Temporal texture and activity recognition. In Motion-Based Recognition. 87–124.
[175]
Xianbiao Qi, Chun-Guang Li, Guoying Zhao, Xiaopeng Hong, and Matti Pietikäinen. 2016. Dynamic texture and scene classification by transferring deep image features. Neurocomputing 171 (2016), 1230–1241.
[176]
Yulong Qiao and Lixiang Weng. 2015. Hidden Markov model based dynamic texture classification. IEEE Signal Processing Letters 22, 4 (2015), 509–512.
[177]
Yu-Long Qiao and Zheng-Yi Xing. 2018. Dynamic texture classification using multivariate hidden Markov model. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences 101-A, 1 (2018), 302–305.
[178]
Y. Quan, C. Bao, and H. Ji. 2016. Equiangular kernel dictionary learning with applications to dynamic texture analysis. In CVPR. 308–316.
[179]
Y. Quan, Y. Huang, and H. Ji. 2015. Dynamic texture recognition via orthogonal tensor dictionary learning. In ICCV. 73–81.
[180]
Yuhui Quan, Yuping Sun, and Yong Xu. 2017. Spatiotemporal lacunarity spectrum for dynamic texture classification. Computer Vision and Image Understanding 165 (2017), 85–96.
[181]
Yuhui Quan, Yong Xu, Yuping Sun, and Yu Luo. 2014. Lacunarity analysis on image patterns for texture classification. In CVPR. 160–167.
[182]
Ashfaqur Rahman and M. Manzur Murshed. 2007. Multiple temporal texture detection using feature space mapping. In CIVR, Nicu Sebe and Marcel Worring (Eds.). ACM, 417–424.
[183]
Akhlaqur Rahman and Sumaira Tasnim. 2014. Block motion based dynamic texture analysis: A review. International Journal of Computer Trends and Technology 8, 2 (2014), 76–78.
[184]
Trygve Randen and John Håkon Husøy. 1997. Optimal filter-bank design for multiple texture discrimination. In ICIP. 215–218.
[185]
A. Ravichandran, R. Chaudhry, and R. Vidal. 2009. View-invariant dynamic texture recognition using a bag of dynamical systems. In CVPR. 1651–1657.
[186]
Avinash Ravichandran, Rizwan Chaudhry, and René Vidal. 2013. Categorizing dynamic textures using a bag of dynamical systems. IEEE Transactions on Pattern Analysis and Machine Intelligence 35, 2 (2013), 342–353.
[187]
J. Ren, X. Jiang, and J. Yuan. 2013. Dynamic texture recognition using enhanced LBP features. In ICASSP. 2400–2404.
[188]
Jianfeng Ren, Xudong Jiang, and Junsong Yuan. 2013. Noise-resistant local binary pattern with an embedded error-correction mechanism. IEEE Transactions on Image Processing 22, 10 (2013), 4049–4060.
[189]
J. Ren, X. Jiang, J. Yuan, and G. Wang. 2014. Optimizing LBP structure for visual recognition using binary quadratic programming. IEEE Signal Processing Letters 21, 11 (2014), 1346–1350.
[190]
Kang Hyeon Rhee. 2020. Detection of spliced image forensics using texture analysis of median filter residual. IEEE Access 8 (2020), 103374–103384.
[191]
Lucas Correia Ribas and Odemir M. Bruno. 2019. Dynamic texture classification using deterministic partially self-avoiding walks on networks. In ICIAP. 82–93.
[192]
Lucas Correia Ribas, Wesley Nunes Gonçalves, and Odemir M. Bruno. 2019. Dynamic texture analysis with diffusion in networks. Digital Signal Processing 92 (2019), 109–126.
[193]
Radek Richtr and Michal Haindl. 2015. Dynamic texture editing. In SCCG. ACM, 133–140.
[194]
Adin Ramirez Rivera, Jorge A. Rojas Castillo, and Oksam Chae. 2013. Local directional number pattern for face analysis: Face and expression recognition. IEEE Transactions on Image Processing 22, 5 (2013), 1740–1752.
[195]
Adin Ramirez Rivera and Oksam Chae. 2015. Spatiotemporal directional number transitional graph for dynamic texture recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence 37, 10 (2015), 2146–2152.
[196]
F. Rosenblatt. 1958. The perceptron: A probabilistic model for information storage and organization in the brain.Psychological Review 65, 6 (1958), 386–408.
[197]
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein, A. C. Berg, and F.-F. Li. 2015. ImageNet large scale visual recognition challenge. IJCV 115, 3 (2015), 211–252.
[198]
Jarbas Joaci de Mesquita Sá Junior, Lucas Correia Ribas, and Odemir Martinez Bruno. 2019. Randomized neural network based signature for dynamic texture classification. Expert Systems with Applications 135 (2019), 194–200.
[199]
P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto. 2001. Dynamic texture recognition. In CVPR. 58–63.
[200]
Bernhard Schölkopf, Alexander J. Smola, and Klaus-Robert Müller. 1998. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation 10, 5 (1998), 1299–1319.
[201]
Paul Scovanner, Saad Ali, and Mubarak Shah. 2007. A 3-dimensional sift descriptor and its application to action recognition. In ACM International Conference on Multimedia. 357–360.
[202]
Ja-Won Seo and Seong-Dae Kim. 2016. Dynamic background subtraction via sparse representation of dynamic textures in a low-dimensional subspace. Signal Image and Video Processing 10, 1 (2016), 29–36.
[203]
Shai Shalev-Shwartz, Yoram Singer, Nathan Srebro, and Andrew Cotter. 2011. Pegasos: Primal estimated sub-gradient solver for SVM. Mathematical Programming 127, 1 (2011), 3–30.
[204]
Rui Shao, Xiangyuan Lan, and Pong C. Yuen. 2019. Joint discriminative learning of deep dynamic textures for 3D mask face anti-spoofing. IEEE Transactions on Information Forensics and Security 14, 4 (2019), 923–938.
[205]
Rakesh Sharma and Rajib Kumar Panigrahi. 2021. Texture classification-based NLM PolSAR filter. IEEE Geosci. Remote. Sens. Lett. 18, 8 (2021), 1396–1400.
[206]
N. Shrivastava and V. Tyagi. 2014. An effective scheme for image texture classification based on binary local structure pattern. Visual Computer 30, 11 (2014), 1223–1232.
[207]
Robert H. Shumway and David S. Stoffer. 2000. Time Series Analysis and Its Applications. Springer.
[208]
Pedro M. Silva and João Batista Florindo. 2021. Fractal measures of image local features: An application to texture recognition. Multim. Tools Appl. 80, 9 (2021), 14213–14229.
[209]
Karen Simonyan and Andrew Zisserman. 2014. Two-stream convolutional networks for action recognition in videos. In NIPS. 568–576.
[210]
Karen Simonyan and Andrew Zisserman. 2015. Very deep convolutional networks for large-scale image recognition. In ICLR.
[211]
Josef Sivic and Andrew Zisserman. 2003. Video Google: A text retrieval approach to object matching in videos. In ICCV. 1470–1477.
[212]
Thomas Strohmer and Robert W. Heath. 2003. Grassmannian frames with applications to coding and communication. Applied and Computational Harmonic Analysis 14, 3 (2003), 257–275.
[213]
Y. Sun, Y. Xu, and Y. Quan. 2015. Characterizing dynamic textures with space-time lacunarity analysis. In ICME. 1–6.
[214]
Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2015. Going deeper with convolutions. In CVPR. 1–9.
[215]
Martin Szummer and Rosalind W. Picard. 1996. Temporal texture modeling. In ICIP. 823–826.
[216]
X. Tan and B. Triggs. 2010. Enhanced local texture feature sets for face recognition under difficult lighting conditions. IEEE Transactions on Image Processing 19, 6 (2010), 1635–1650.
[217]
M. Tesfaldet, M. A. Brubaker, and K. G. Derpanis. 2018. Two-stream convolutional networks for dynamic texture synthesis. In CVPR. 6703–6712.
[218]
D. Tiwari and V. Tyagi. 2016. Dynamic texture recognition: A review. In ISDIA. 365–373.
[219]
Deepshikha Tiwari and Vipin Tyagi. 2016. Dynamic texture recognition based on completed volume local binary pattern. Multidimensional Systems and Signal Processing 27, 2 (2016), 563–575.
[220]
D. Tiwari and V. Tyagi. 2016. A novel scheme based on local binary pattern for dynamic texture recognition. Computer Vision and Image Understanding 150 (2016), 58–65.
[221]
Deepshikha Tiwari and Vipin Tyagi. 2017. An auto tuned noise resistant descriptor for dynamic texture recognition. Multimedia Tools and Applications 76, 20 (2017), 21225–21246.
[222]
Deepshikha Tiwari and Vipin Tyagi. 2017. Dynamic texture recognition using multiresolution edge-weighted local structure pattern. Computers & Electrical Engineering 62 (2017), 485–498.
[223]
Deepshika Tiwari and Vipin Tyagi. 2017. Improved Weber’s law based local binary pattern for dynamic texture recognition. Multimedia Tools and Applications 76, 5 (2017), 6623–6640.
[224]
Du Tran, Lubomir D. Bourdev, Rob Fergus, Lorenzo Torresani, and Manohar Paluri. 2015. Learning spatiotemporal features with 3D convolutional networks. In ICCV. 4489–4497.
[225]
Mihran Tüceryan and Anil K. Jain. 1990. Texture segmentation using Voronoi polygons. IEEE Trans. Pattern Anal. Mach. Intell. 12, 2 (1990), 211–216.
[226]
Nuno Vasconcelos and Andrew Lippman. 1998. Learning mixture hierarchies. In NIPS. 606–612.
[227]
Heng Wang, Alexander Kläser, Cordelia Schmid, and Cheng-Lin Liu. 2013. Dense trajectories and motion boundary descriptors for action recognition. International Journal of Computer Vision 103, 1 (2013), 60–79.
[228]
Liuyang Wang, Huaping Liu, and Fuchun Sun. 2016. Dynamic texture video classification using extreme learning machine. Neurocomputing 174 (2016), 278–285.
[229]
Yong Wang and Shiqiang Hu. 2015. Exploiting high level feature for dynamic textures recognition. Neurocomputing 154 (2015), 217–224.
[230]
Y. Wang and S. Hu. 2016. Chaotic features for dynamic textures recognition. Soft Computing 20, 5 (2016), 1977–1989.
[231]
Xian Wei, Yuanxiang Li, Hao Shen, Fang Chen, Martin Kleinsteuber, and Zhongfeng Wang. 2017. Dynamical textures modeling via joint video dictionary learning. IEEE Transactions on Image Processing 26, 6 (2017), 2929–2943.
[232]
Richard P. Wildes and James R. Bergen. 2000. Qualitative spatiotemporal analysis using an oriented energy representation. In ECCV. 768–784.
[233]
Franco Woolfe and Andrew W. Fitzgibbon. 2006. Shift-invariant dynamic texture recognition. In ECCV. 549–562.
[234]
Jin Xie and Yi Fang. 2016. Dynamic texture recognition with video set based collaborative representation. Image and Vision Computing 55 (2016), 86–92.
[235]
J. Xu, S. Denman, S. Sridharan, C. Fookes, and R. Rana. 2011. Dynamic texture reconstruction from sparse codes for unusual event detection in crowded scenes. In ACM Workshop on Modeling and Representing Events. ACM, 25–30.
[236]
Panpan Xu and Wencheng Wang. 2019. Structure-aware window optimization for texture filtering. IEEE Trans. Image Process. 28, 9 (2019), 4354–4363.
[237]
Y. Xu, S. B. Huang, H. Ji, and C. Fermüller. 2012. Scale-space texture description on SIFT-like textons. Computer Vision and Image Understanding 116, 9 (2012), 999–1013.
[238]
Yong Xu, Hui Ji, and Cornelia Fermüller. 2009. Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision 83, 1 (2009), 85–100.
[239]
Y. Xu, Y. Quan, H. Ling, and H. Ji. 2011. Dynamic texture classification using dynamic fractal analysis. In ICCV. 1219–1226.
[240]
Yong Xu, Yuhui Quan, Zhuming Zhang, Haibin Ling, and Hui Ji. 2015. Classifying dynamic textures via spatiotemporal fractal analysis. Pattern Recognition 48, 10 (2015), 3239–3248.
[241]
Yong Xu, Xiong Yang, Haibin Ling, and Hui Ji. 2010. A new texture descriptor using multifractal analysis in multi-orientation wavelet pyramid. In CVPR. 161–168.
[242]
Feng Yang, Gui-Song Xia, Gang Liu, Liangpei Zhang, and Xin Huang. 2016. Dynamic texture recognition by aggregating spatial and temporal features via ensemble SVMs. Neurocomputing 173 (2016), 1310–1321.
[243]
Rui Yang, Xin Xu, Zhaozhuo Xu, Hao Dong, Rong Gui, and Fangling Pu. 2019. Dynamic fractal texture analysis for PolSAR land cover classification. IEEE Transactions on Geoscience and Remote Sensing 57, 8 (2019), 5991–6002.
[244]
Alper Yilmaz, Omar Javed, and Mubarak Shah. 2006. Object tracking: A survey. ACM Comput. Surv. 38, 4 (2006), 13.
[245]
Lu Yuan, Fang Wen, Ce Liu, and Heung-Yeung Shum. 2004. Synthesizing dynamic texture with closed-loop linear dynamic system. In ECCV. 603–616.
[246]
Matthew D. Zeiler and Rob Fergus. 2014. Visualizing and understanding convolutional networks. In ECCV. 818–833.
[247]
B. Zhang, Y. Gao, S. Zhao, and J. Liu. 2010. Local derivative pattern versus local binary pattern: Face recognition with high-order local pattern descriptor. IEEE Transactions on Image Processing 19, 2 (2010), 533–544.
[248]
Xin Zhang, Yee-Hong Yang, Zhiguang Han, Hui Wang, and Chao Gao. 2013. Object class detection: A survey. ACM Comput. Surv. 46, 1 (2013), 10:1–10:53.
[249]
Guoying Zhao, Mark Barnard, and Matti Pietikäinen. 2009. Lipreading with local spatiotemporal descriptors. IEEE Transactions on Multimedia 11, 7 (2009), 1254–1265.
[250]
G. Zhao and M. Pietikäinen. 2007. Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Transactions on Pattern Analysis and Machine Intelligence 29, 6 (2007), 915–928.
[251]
X. Zhao, Y. Lin, and J. Heikkilä. 2017. Dynamic texture recognition using multiscale PCA-learned filters. In ICIP. 4152–4156.
[252]
X. Zhao, Y. Lin, and J. Heikkilä. 2018. Dynamic texture recognition using volume local binary count patterns with an application to 2D face spoofing detection. IEEE Transactions on Multimedia 20, 3 (2018), 552–566.
[253]
X. Zhao, Y. Lin, and L. Liu. 2019. Dynamic texture recognition using 3D random features. In ICASSP. 2102–2106.
[254]
X. Zhao, Y. Lin, L. Liu, J. Heikkilä, and W. Zheng. 2019. Dynamic texture classification using unsupervised 3D filter learning and local binary encoding. IEEE Transactions on Multimedia 21, 7 (2019), 1694–1708.
[255]
Y. Zhao, D.-S. Huang, and W. Jia. 2012. Completed local binary count for rotation invariant texture classification. IEEE Transactions on Image Processing 21, 10 (2012), 4492–4497.
[256]
P. Zhu, W. Zuo, L. Zhang, S. C. Shiu, and D. Zhang. 2014. Image set-based collaborative representation for face recognition. IEEE Transactions on Information Forensics and Security 9, 7 (2014), 1120–1132.
[257]
Nabila Zrira, Kawthar Mouhcine, Ibtissam Benmiloud, and El-Houssine Bouyakhf. 2018. Dynamic texture-based scene classification using deep belief networks. In LOPAL. ACM, 57:1–57:6.

Cited By

View all
  • (2024)Dynamic Texture Classification Using AutoEncoder-Based Local Features and Fisher Vector EncodingIEEE Access10.1109/ACCESS.2024.342166612(90768-90781)Online publication date: 2024
  • (2023)TEAR: Exploring Temporal Evolution of Adversarial Robustness for Membership Inference Attacks Against Federated LearningIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.330371818(4996-5010)Online publication date: 1-Jan-2023
  • (2023)EGIA: An External Gradient Inversion Attack in Federated LearningIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.330216118(4984-4995)Online publication date: 1-Jan-2023
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Computing Surveys
ACM Computing Surveys  Volume 55, Issue 1
January 2023
860 pages
ISSN:0360-0300
EISSN:1557-7341
DOI:10.1145/3492451
Issue’s Table of Contents

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 November 2021
Accepted: 01 September 2021
Revised: 01 August 2021
Received: 01 February 2021
Published in CSUR Volume 55, Issue 1

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Dynamic textures
  2. LBP-based variants
  3. deep learning
  4. dictionary learning
  5. fractal analysis
  6. Gaussian-based filters
  7. linear dynamical system
  8. optical flow
  9. video representation

Qualifiers

  • Survey
  • Refereed

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)64
  • Downloads (Last 6 weeks)1
Reflects downloads up to 27 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)Dynamic Texture Classification Using AutoEncoder-Based Local Features and Fisher Vector EncodingIEEE Access10.1109/ACCESS.2024.342166612(90768-90781)Online publication date: 2024
  • (2023)TEAR: Exploring Temporal Evolution of Adversarial Robustness for Membership Inference Attacks Against Federated LearningIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.330371818(4996-5010)Online publication date: 1-Jan-2023
  • (2023)EGIA: An External Gradient Inversion Attack in Federated LearningIEEE Transactions on Information Forensics and Security10.1109/TIFS.2023.330216118(4984-4995)Online publication date: 1-Jan-2023
  • (2023)Dynamic Texture Classification Using Directional Binarized Random FeaturesIEEE Access10.1109/ACCESS.2023.327919511(55895-55910)Online publication date: 2023
  • (2023)Locating robust patterns based on invariant of LTP-based featuresPattern Recognition Letters10.1016/j.patrec.2022.11.008165:C(9-16)Online publication date: 1-Jan-2023

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Full Text

View this article in Full Text.

Full Text

HTML Format

View this article in HTML Format.

HTML Format

Figures

Tables

Media

Share

Share

Share this Publication link

Share on social media