Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Enhancing the Quantum Linear Systems Algorithm Using Richardson Extrapolation

Published: 14 January 2022 Publication History
  • Get Citation Alerts
  • Abstract

    We present a quantum algorithm to solve systems of linear equations of the form Ax=b, where A is a tridiagonal Toeplitz matrix and b results from discretizing an analytic function, with a circuit complexity of O(1/√ε, poly (log κ, log N)), where N denotes the number of equations, ε is the accuracy, and κ the condition number. The repeat-until-success algorithm has to be run O(κ/(1-ε)) times to succeed, leveraging amplitude amplification, and needs to be sampled O(1/ε2) times. Thus, the algorithm achieves an exponential improvement with respect to N over classical methods. In particular, we present efficient oracles for state preparation, Hamiltonian simulation, and a set of observables together with the corresponding error and complexity analyses. As the main result of this work, we show how to use Richardson extrapolation to enhance Hamiltonian simulation, resulting in an implementation of Quantum Phase Estimation (QPE) within the algorithm with 1/√ε circuits that can be run in parallel each with circuit complexity 1/√ ε instead of 1/ε. Furthermore, we analyze necessary conditions for the overall algorithm to achieve an exponential speedup compared to classical methods. Our approach is not limited to the considered setting and can be applied to more general problems where Hamiltonian simulation is approximated via product formulae, although our theoretical results would need to be extended accordingly. All the procedures presented are implemented with Qiskit and tested for small systems using classical simulation as well as using real quantum devices available through the IBM Quantum Experience.

    References

    [1]
    Scott Aaronson. 2015. Read the fine print. Nat. Phys. 11 (Apr. 2015), 291–293. DOI:DOI:
    [2]
    Héctor Abraham, Adu Offei, Rochisha Agarwal, et al.2019. Qiskit: An Open-source Framework for Quantum Computing. DOI:DOI:
    [3]
    Dorit Aharonov and Amnon Ta-Shma. 2003. Adiabatic quantum state generation and statistical zero knowledge. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC’03). Association for Computing Machinery, New York, NY, 20–29. DOI:DOI:https://doi.org/10.1145/780542.780546
    [4]
    Graeme Ahokas. 2004. Improved algorithms for approximate quantum fourier transforms and sparse Hamiltonian simulations. https://prism.ucalgary.ca/handle/1880/41417.
    [5]
    Mircea Andrecut and Md Kamar Ali. 2011. Efficient algorithm for initializing the amplitude. Mod. Phys. Lett. B 15 (11 2011). DOI:DOI:
    [6]
    Juan Miguel Arrazola, Alain Delgado, Bhaskar Roy Bardhan, and Seth Lloyd. 2019. Quantum-inspired algorithms in practice. arXiv e-prints (2019). arXiv:1905.10415 [quant-ph].
    [7]
    Belal E. Baaquie, Claudio Corianò, and Marakani Srikant. 2003. Quantum mechanics, path integrals and option pricing: Reducing the complexity of finance. In Nonlinear Physics - Theory and Experiment II. World Scientific, 333–339. DOI:DOI:.
    [8]
    Dominic Berry and Leonardo Novo. 2016. Corrected quantum walk for optimal Hamiltonian simulation. Quantum Info. Comput. 16, 15-16 (Nov. 2016), 1295–1317. Retrieved from http://dl.acm.org/citation.cfm?id=3179439.3179442.
    [9]
    Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. 2007. Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 2 (2007), 359–371. DOI:DOI:
    [10]
    Dominic W. Berry and Andrew M. Childs. 2012. Black-box Hamiltonian simulation and unitary implementation. Quantum Info. Comput. 12, 1-2 (Jan. 2012), 29–62. Retrieved from http://dl.acm.org/citation.cfm?id=2231036.2231040.
    [11]
    Dominic W. Berry, Andrew M. Childs, and Robin Kothari. 2015. Hamiltonian simulation with nearly optimal dependence on all parameters. In Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer Science (FOCS’15). IEEE Computer Society, Washington, DC, 792–809. DOI:DOI:https://doi.org/10.1109/FOCS.2015.54
    [12]
    Dominic W. Berry, Andrew M. Childs, Richard Cleve, et al.2014. Exponential improvement in precision for simulating sparse Hamiltonians. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing (STOC’14). ACM, New York, NY, 283–292. DOI:DOI:https://doi.org/10.1145/2591796.2591854
    [13]
    Gilles Brassard, Peter Hoyer, Michele Mosca, and Alain Tapp. 2000. Quantum amplitude amplification and estimation. arXiv e-prints (2000). arXiv:quant-ph/0005055.
    [14]
    Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, et al.2020. Mitigating measurement errors in multi-qubit experiments. arXiv e-prints (2020). arXiv:2006.14044 [quant-ph].
    [15]
    John C. Butcher. 2016. Numerical Methods for Ordinary Differential Equations (3rd ed.). Wiley.
    [16]
    Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, et al.2013. Quantum algorithm and circuit design solving the Poisson equation. New J. Phys. 15 (01 2013), 013021. DOI:DOI:
    [17]
    Yu-Chuan Chen and Che-Rung Lee. 2017. Augmented block Cimmino distributed algorithm for solving tridiagonal systems on GPU. Adv. GPU Res. Pract. (12 2017), 233–246. DOI:DOI:
    [18]
    Chen-Fu Chiang and Pawel Wocjan. 2010. Quantum algorithm for preparing thermal Gibbs states—detailed analysis. arXiv e-prints (2010). arXiv:1001.1130 [physics.comp-ph].
    [19]
    Andrew Childs, Robin Kothari, and Rolando D. Somma. 2015. Quantum linear systems algorithm with exponentially improved dependence on precision. SIAM J. Comput. 46 (11 2015). DOI:DOI:
    [20]
    Andrew M. Childs. 2010. On the relationship between continuous- and discrete-time quantum walk. Commun. Math. Phys. 294, 2 (2010), 581–603. DOI:DOI:
    [21]
    Andrew M. Childs, Richard Cleve, Enrico Deotto, et al.2003. Exponential algorithmic speedup by a quantum walk. In Proceedings of the 35th Annual ACM Symposium on Theory of Computing (STOC’03). ACM, New York, NY, 59–68. DOI:DOI:https://doi.org/10.1145/780542.780552
    [22]
    Andrew M. Childs and Robin Kothari. 2010. Limitations on the simulation of non-sparse Hamiltonians. Quantum Info. Comput. 10, 7 (July 2010), 669–684. Retrieved from http://dl.acm.org/citation.cfm?id=2011373.2011380.
    [23]
    Andrew M. Childs and Robin Kothari. 2011. Simulating sparse Hamiltonians with star decompositions. In Proceedings of the 5th Conference on Theory of Quantum Computation, Communication, and Cryptography (TQC’10). Springer-Verlag, Berlin, 94–103. Retrieved from http://dl.acm.org/citation.cfm?id=1946127.1946135.
    [24]
    Andrew M. Childs and Nathan Wiebe. 2012. Hamiltonian simulation using linear combinations of unitary operations. Quantum Info. Comput. 12, 11–12 (Nov. 2012), 901–924. Retrieved from http://dl.acm.org/citation.cfm?id=2481569.2481570.
    [25]
    Siu A. Chin. 2010. Multi-product splitting and Runge-Kutta-Nyström integrators. Celest. Mech. Dynam. Astron. 106, 4 (01 Apr. 2010), 391–406. DOI:DOI:
    [26]
    Siu A. Chin and Jrgen Geiser. 2011. Multi-product operator splitting as a general method of solving autonomous and nonautonomous equations. IMA J. Numer. Anal. 31, 4 (01 2011), 1552–1577. DOI:DOI:
    [27]
    B. Dave Clader, Bryan C. Jacobs, and Chad R. Sprouse. 2013. Preconditioned quantum linear system algorithm. Phys. Rev. Lett. 110, 25 (June 2013), 250504. DOI:DOI:
    [28]
    Robert M. Corless, Gaston H. Gonnet, D. E. G. Hare, et al.1996. On the Lambert W function. Adv. Comput. Math. 5, 4 (1996), 329–359. Retrieved from http://www.springerlink.com/index/jn36121kn488136q.pdf.
    [29]
    James Demmel. 1992. The componentwise distance to the nearest singular matrix. SIAM J. Matrix Anal. Appl. 13, 1 (1992), 10–19. DOI:DOI:https://doi.org/10.1137/0613003arXiv:https://doi.org/10.1137/0613003
    [30]
    Peter Deuflhard and Andreas Hohmann. 2003. Numerical Analysis in Modern Scientific Computing. Springer New York. DOI:DOI:https://doi.org/10.1007/978-0-387-21584-6
    [31]
    Andreas Dewes, Florian R. Ong, Vivien Schmitt, et al.2012. Characterization of a two-transmon processor with individual single-shot qubit readout. Phys. Rev. Lett. 108, 5 (Feb. 2012), 057002. DOI:DOI:
    [32]
    Eugene F. Dumitrescu, Alexander J. McCaskey, Gaute Hagen, et al.2018. Cloud quantum computing of an atomic nucleus. Phys. Rev. Lett. 120, 21 (May 2018), 210501. DOI:DOI:
    [33]
    Daniel Egloff. 2012. Pricing financial derivatives with high performance finite difference solvers on GPUs. GPU Comput. Gems Jade Ed. (12 2012). DOI:DOI:
    [34]
    Suguru Endo, Qi Zhao, Ying Li, Simon Benjamin, and Xiao Yuan. 2019. Mitigating algorithmic errors in a Hamiltonian simulation. Phys. Rev. A 99, 1 (Jan. 2019), 012334. DOI:DOI:
    [35]
    Richard P. Feynman. 1982. Simulating physics with computers. Int. J. Theor. Phys. 21, 6 (01 June 1982), 467–488. DOI:DOI:
    [36]
    Julien Gacon, Christa Zoufal, and Stefan Woerner. 2020. Quantum-enhanced simulation-based optimization. arXiv e-prints (2020). arXiv:2005.10780 [quant-ph].
    [37]
    András Gilyén, Seth Lloyd, and Ewin Tang. 2018. Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension. arXiv e-prints (2018). arXiv:1811.04909 [cs.DS].
    [38]
    Lov Grover and Terry Rudolph. 2002. Creating superpositions that correspond to efficiently integrable probability distributions. arXiv e-prints (2002). arXiv:quant-ph/0208112.
    [39]
    Thomas Häner, Martin Roetteler, and Krysta Marie Svore. 2018. Optimizing quantum circuits for arithmetic. CoRR abs/1805.12445 (2018).
    [40]
    Guang Hao Low, Vadym Kliuchnikov, and Nathan Wiebe. 2019. Well-conditioned multiproduct Hamiltonian simulation. arXiv e-prints (2019). arXiv:1907.11679 [quant-ph].
    [41]
    Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd. 2009. Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 15 (2009), 1–15. DOI:DOI:
    [42]
    Peter Hawkes and Erwin Kasper. 2018. The finite-element method (FEM). Principles of Electron Optics (Second Edition) (01 2018), 185–207. DOI:DOI:
    [43]
    Adam Holmes and A. Y. Matsuura. 2020. Efficient quantum circuits for accurate state preparation of smooth, differentiable functions. arXiv e-prints (2020). arXiv:2005.04351 [quant-ph].
    [44]
    Raban Iten, Roger Colbeck, Ivan Kukuljan, et al.2016. Quantum circuits for isometries. Phys. Rev. A 93, 3 (Mar. 2016), 032318. DOI:DOI:
    [45]
    Raban Iten, Oliver Reardon-Smith, Luca Mondada, et al.2019. Introduction to UniversalQCompiler. arXiv e-prints (2019). arXiv:1904.01072 [quant-ph].
    [46]
    Abhinav Kandala, Kristan Temme, Antonio D. Córcoles, et al.2019. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 7749 (2019), 491–495. DOI:DOI:
    [47]
    Donald E. Knuth. 1962. Evaluation of polynomials by computer. Commun. ACM 5, 12 (Dec. 1962), 595–599. DOI:DOI:https://doi.org/10.1145/355580.369074
    [48]
    Seth Lloyd, Masoud Mohseni, and Patrick Rebentrost. 2014. Quantum principal component analysis. Nat. Phys. 10, 9 (01 Sept. 2014), 631–633. DOI:DOI:
    [49]
    Gui Lu Long and Yang Sun. 2001. Efficient scheme for initializing a quantum register with an arbitrary superposed state. Phys. Rev. A - Atom., Molec. Optic. Phys. 64, 1 (2001), 4. DOI:DOI:
    [50]
    Ashley Montanaro and Sam Pallister. 2015. Quantum algorithms and the finite element method. Phys. Rev. A 93 (12 2015). DOI:DOI:
    [51]
    Mikko Möttönen, Juha J. Vartiainen, Ville Bergholm, and Martti M. Salomaa. 2005. Transformation of quantum states using uniformly controlled rotations. Quantum Info. Comput. 5, 6 (Sept. 2005), 467–473. Retrieved from http://dl.acm.org/citation.cfm?id=2011670.2011675.
    [52]
    Michael A. Nilsen and Isaac L. Chuang. 2010. Quantum Computation and Quantum Information. Cambridge University Press.
    [53]
    Martin Plesch and Časlav Brukner. 2011. Quantum-state preparation with universal gate decompositions. Phys. Rev. A 83, 3 (Mar. 2011), 032302. DOI:DOI:
    [54]
    Lewis F. Richardson. 1911. The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam. Philos. Trans. Roy. Societ. London. Series A, Contain. Papers Math. Phys. Charact. 210 (1911), 307–357. Retrieved from http://www.jstor.org/stable/90994.
    [55]
    Edward B. Saff and Vilmos Totik. 1989. Polynomial approximation of piecewise analytic functions. J. London Math. Societ. s2-39, 3 (1989), 487–498. DOI:DOI:
    [56]
    Maria Schuld, Ilya Sinayskiy, and Francesco Petruccione. 2016. Prediction by linear regression on a quantum computer. Phys. Rev. A 94, 2 (Aug. 2016), 022342. DOI:DOI:
    [57]
    Changpeng Shao and Hua Xiang. 2018. Quantum circulant preconditioner for a linear system of equations. Phys. Rev. A 98, 6 (Dec. 2018), 062321. DOI:DOI:
    [58]
    Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. 2005. Synthesis of quantum logic circuits. In Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC’05). ACM, New York, NY, 272–275. DOI:DOI:https://doi.org/10.1145/1120725.1120847
    [59]
    Jonathan R. Shewchuk. 1994. An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Technical Report. Pittsburgh, PA. Carnegie Mellon University.
    [60]
    Nikitas Stamatopoulos, Daniel J. Egger, Yue Sun, et al. 2020. Option pricing using quantum computers. Quantum 4 (2020). DOI:DOI:
    [61]
    Gilbert Strang. 1968. On the construction and comparison of difference schemes. SIAM J. Numer. Anal. 5, 3 (Sept. 1968), 506–517. DOI:DOI:
    [62]
    Yigit Subasi, Rolando D. Somma, and Davide Orsucci. 2019. Quantum algorithms for systems of linear equations inspired by adiabatic quantum computing. Phys. Rev. Lett. 122, 6 (Feb. 2019), 060504. DOI:DOI:
    [63]
    Masuo Suzuki. 1991. General theory of fractal path integrals with applications to many-body theories and statistical physics. J. Math. Phys. 32, 2 (1991), 400–407. DOI:DOI:
    [64]
    Eitan Tadmor. 1986. The exponential accuracy of Fourier and Chebyshev differencing methods. SIAM J. Numer. Anal. 23, 1 (1986), 1–10. DOI:DOI:https://doi.org/10.1137/0723001
    [65]
    Ewin Tang. 2018. Quantum-inspired classical algorithms for principal component analysis and supervised clustering. arXiv e-prints (2018). arXiv:1811.00414 [cs.DS].
    [66]
    Ewin Tang. 2019. A quantum-inspired classical algorithm for recommendation systems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC’19). Association for Computing Machinery, New York, NY, 217–228. DOI:DOI:https://doi.org/10.1145/3313276.3316310
    [67]
    Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. 2017. Error mitigation for short-depth quantum circuits. Phys. Rev. Lett. 119, 18 (2017), 1–15. DOI:DOI:
    [68]
    Yu Tong, Dong An, Nathan Wiebe, and Lin Lin. 2020. Fast inversion, preconditioned quantum linear system solvers, and fast evaluation of matrix functions. arXiv e-prints (2020). arXiv:2008.13295 [quant-ph].
    [69]
    Almudena Carrera Vazquez and Stefan Woerner. 2020. Efficient state preparation for quantum amplitude estimation. arXiv e-prints (2020). arXiv:2005.07711 [quant-ph].
    [70]
    Dan Ventura and Tony R. Martinez. 1998. Initializing the amplitude distribution of a quantum state. Found. Phys. Lett. 12 (1998), 547–559.
    [71]
    H. H. Wang. 1981. A parallel method for tridiagonal equations. ACM Trans. Math. Softw. 7, 2 (June 1981), 170–183. DOI:DOI:https://doi.org/10.1145/355945.355947
    [72]
    Nathan Wiebe, Daniel Braun, and Seth Lloyd. 2012. Quantum algorithm for data fitting. Phys. Rev. Lett. 109, 5 (Aug. 2012), 050505. DOI:DOI:
    [73]
    Stefan Woerner and Daniel J. Egger. 2018. Quantum risk analysis. npj Quant. Inf.Jan. (2018). DOI:DOI:
    [74]
    Leonard Wossnig, Zhikuan Zhao, and Anupam Prakash. 2018. Quantum linear system algorithm for dense matrices. Phys. Rev. Lett. 120, 5 (Jan. 2018), 050502. DOI:DOI:
    [75]
    Wen-Chyuan Yueh. 2005. Eigenvalues of several tridiagonal matrices. Appl. Math. E-Notes 5 (01 2005).
    [76]
    Zhikuan Zhao, Jack K. Fitzsimons, and Joseph F. Fitzsimons. 2019. Quantum-assisted Gaussian process regression. Phys. Rev. A 99, 5 (May 2019), 052331. DOI:DOI:
    [77]
    Christa Zoufal, Aurélien Lucchi, and Stefan Woerner. 2019. Quantum generative adversarial networks for learning and loading random distributions. npj Quant. Inf. 5, 1 (Nov. 2019). DOI:DOI:

    Cited By

    View all
    • (2024)Improved Accuracy for Trotter Simulations Using Chebyshev InterpolationQuantum10.22331/q-2024-02-26-12668(1266)Online publication date: 26-Feb-2024
    • (2024)Hardware efficient decomposition of the Laplace operator and its application to the Helmholtz and the Poisson equation on quantum computerQuantum Information Processing10.1007/s11128-024-04458-y23:7Online publication date: 10-Jul-2024
    • (2024)Efficient Use of Quantum Linear System Algorithms in Inexact Infeasible IPMs for Linear OptimizationJournal of Optimization Theory and Applications10.1007/s10957-024-02452-z202:1(146-183)Online publication date: 1-Jul-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Quantum Computing
    ACM Transactions on Quantum Computing  Volume 3, Issue 1
    March 2022
    112 pages
    EISSN:2643-6817
    DOI:10.1145/3505212
    Issue’s Table of Contents

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 14 January 2022
    Accepted: 01 September 2021
    Revised: 01 August 2021
    Received: 01 October 2020
    Published in TQC Volume 3, Issue 1

    Check for updates

    Author Tags

    1. Quantum
    2. algorithm
    3. complexity
    4. linear system

    Qualifiers

    • Research-article
    • Refereed

    Funding Sources

    • National Centre of Competence in Research Quantum Science and Technology (QSIT)

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)371
    • Downloads (Last 6 weeks)30
    Reflects downloads up to 27 Jul 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Improved Accuracy for Trotter Simulations Using Chebyshev InterpolationQuantum10.22331/q-2024-02-26-12668(1266)Online publication date: 26-Feb-2024
    • (2024)Hardware efficient decomposition of the Laplace operator and its application to the Helmholtz and the Poisson equation on quantum computerQuantum Information Processing10.1007/s11128-024-04458-y23:7Online publication date: 10-Jul-2024
    • (2024)Efficient Use of Quantum Linear System Algorithms in Inexact Infeasible IPMs for Linear OptimizationJournal of Optimization Theory and Applications10.1007/s10957-024-02452-z202:1(146-183)Online publication date: 1-Jul-2024
    • (2023)Well-conditioned multi-product formulas for hardware-friendly Hamiltonian simulationQuantum10.22331/q-2023-07-25-10677(1067)Online publication date: 25-Jul-2023
    • (2023)Quantum-Enhanced DC Optimal Power Flow2023 IEEE Texas Power and Energy Conference (TPEC)10.1109/TPEC56611.2023.10078612(1-6)Online publication date: 13-Feb-2023
    • (2023)Quantum error mitigationReviews of Modern Physics10.1103/RevModPhys.95.04500595:4Online publication date: 13-Dec-2023
    • (2023)Adapting the Harrow-Hassidim-Lloyd algorithm to quantum many-body theoryPhysical Review Research10.1103/PhysRevResearch.5.0431135:4Online publication date: 3-Nov-2023
    • (2023)Performance Study of Variational Quantum Algorithms for Solving the Poisson Equation on a Quantum ComputerPhysical Review Applied10.1103/PhysRevApplied.20.01405420:1Online publication date: 25-Jul-2023
    • (2023)Hybrid quantum algorithms for flow problemsProceedings of the National Academy of Sciences10.1073/pnas.2311014120120:49Online publication date: Dec-2023
    • (2023)Module for arbitrary controlled rotation in gate-based quantum algorithmsPhysica A: Statistical Mechanics and its Applications10.1016/j.physa.2023.129092626(129092)Online publication date: Sep-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Full Text

    View this article in Full Text.

    Full Text

    HTML Format

    View this article in HTML Format.

    HTML Format

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media