Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3503823.3503896acmotherconferencesArticle/Chapter ViewAbstractPublication PagespciConference Proceedingsconference-collections
research-article

Quantum Machine Learning: Current State and Challenges

Published: 22 February 2022 Publication History

Abstract

In recent years, machine learning has penetrated a large part of our daily lives, which creates special challenges and impressive progress in this area. Nevertheless, as the amount of daily data is grown, learning time is increased. Quantum machine learning (QML) may speed up the processing of information and provide great promise in machine learning. However, it is not used in practice yet, because quantum software and hardware challenges are still unsurmountable. This paper provides current research of quantum computing and quantum machine learning algorithms. Also, the quantum vendors, their frameworks, and their platforms are presented. A few fully implemented versions of quantum machine learning are presented, which are easier to be evaluated. Finally, QML's challenges, and problems are discussed.

References

[1]
Steane, A. (1998). Quantum computing. Reports on Progress in Physics, 61(2), 117.
[2]
Lloyd, S., Mohseni, M., & Rebentrost, P. (2013). Quantum algorithms for supervised and unsupervised machine learning. arXiv preprint arXiv:1307.0411.
[3]
Zhang, Y., & Ni, Q. (2020). Recent advances in quantum machine learning. Quantum Engineering, 2(1), e34.
[4]
Preskill, J. (2018). Quantum computing in the NISQ era and beyond. Quantum, 2, 79.
[5]
Schuld, M., Fingerhuth, M., & Petruccione, F. (2017). Implementing a distance-based classifier with a quantum interference circuit. EPL (Europhysics Letters), 119(6), 60002.
[6]
Havlíček, V., Córcoles, A. D., Temme, K., Harrow, A. W., Kandala, A., Chow, J. M., & Gambetta, J. M. (2019). Supervised learning with quantum-enhanced feature spaces. Nature, 567(7747), 209-212.
[7]
Saini, S., Khosla, P. K., Kaur, M., & Singh, G. (2020). Quantum Driven Machine Learning. International Journal of Theoretical Physics, 59(12), 4013-4024.
[8]
Killoran, N., Bromley, T. R., Arrazola, J. M., Schuld, M., Quesada, N., & Lloyd, S. (2019). Continuous-variable quantum neural networks. Physical Review Research, 1(3), 033063.
[9]
Farhi, E., & Neven, H. (2018). Classification with quantum neural networks on near term processors. arXiv preprint arXiv:1802.06002.]
[10]
10-43. Arthur, D. (2021). Balanced k-means clustering on an adiabatic quantum computer. Quantum Information Processing, 20(9), 1-30.
[11]
Tacchino, F., Macchiavello, C., Gerace, D., & Bajoni, D. (2019). An artificial neuron implemented on an actual quantum processor. npj Quantum Information, 5(1), 1-8.
[12]
Zhao, J., Zhang, Y. H., Shao, C. P., Wu, Y. C., Guo, G. C., & Guo, G. P. (2019). Building quantum neural networks based on a swap test. Physical Review A, 100(1), 012334.
[13]
Zhao, C., & Gao, X. S. (2021). QDNN: deep neural networks with quantum layers. Quantum Machine Intelligence, 3(1), 1-9.
[14]
Amin, M. H., Andriyash, E., Rolfe, J., Kulchytskyy, B., & Melko, R. (2018). Quantum boltzmann machine. Physical Review X, 8(2), 021050.
[15]
Shingu, Y., Seki, Y., Watabe, S., Endo, S., Matsuzaki, Y., Kawabata, S., ... & Hakoshima, H. (2020). Boltzmann machine learning with a variational quantum algorithm. arXiv preprint arXiv:2007.00876.
[16]
Zoufal, C., Lucchi, A., & Woerner, S. (2021). Variational quantum boltzmann machines. Quantum Machine Intelligence, 3(1), 1-15.
[17]
Wang, Y., Wang, R., Li, D., Adu-Gyamfi, D., Tian, K., & Zhu, Y. (2019). Improved handwritten digit recognition using quantum K-nearest neighbor algorithm. International Journal of Theoretical Physics, 58(7), 2331-2340.
[18]
Zhang, Y., Feng, B., Jia, W., & Xu, C. Z. (2021). An Improved Quantum Nearest-Neighbor Algorithm. In Proceedings of the 9th International Conference on Computer Engineering and Networks (pp. 405-413). Springer, Singapore.
[19]
Ruan, Y., Xue, X., Liu, H., Tan, J., & Li, X. (2017). Quantum algorithm for k-nearest neighbors classification based on the metric of hamming distance. International Journal of Theoretical Physics, 56(11), 3496-3507.
[20]
Kerenidis, I., Landman, J., Luongo, A., & Prakash, A. (2018). q-means: A quantum algorithm for unsupervised machine learning. arXiv preprint arXiv:1812.03584.
[21]
Benlamine, K., Bennani, Y., Grozavu, N., & Matei, B. (2020, July). Quantum Collaborative K-means. In 2020 International Joint Conference on Neural Networks (IJCNN) (pp. 1-7). IEEE.
[22]
Borujeni, S. E., Nguyen, N. H., Nannapaneni, S., Behrman, E. C., & Steck, J. E. (2020, October). Experimental evaluation of quantum Bayesian networks on IBM QX hardware. In 2020 IEEE International Conference on Quantum Computing and Engineering (QCE) (pp. 372-378). IEEE.
[23]
Cong, I., & Duan, L. (2016). Quantum discriminant analysis for dimensionality reduction and classification. New Journal of Physics, 18(7), 073011.
[24]
Dixit, V., Selvarajan, R., Aldwairi, T., Koshka, Y., Novotny, M. A., Humble, T. S., ... & Kais, S. (2021). Training a quantum annealing based restricted boltzmann machine on cybersecurity data. IEEE Transactions on Emerging Topics in Computational Intelligence.
[25]
Aïmeur, E., Brassard, G., & Gambs, S. (2013). Quantum speed-up for unsupervised learning. Machine Learning, 90(2), 261-287.
[26]
Lloyd, S., Mohseni, M., & Rebentrost, P. (2014). Quantum principal component analysis. Nature Physics, 10(9), 631-633.
[27]
Schuld, M., & Killoran, N. (2019). Quantum machine learning in feature Hilbert spaces. Physical review letters, 122(4), 040504.
[28]
Rebentrost, P., Mohseni, M., & Lloyd, S. (2014). Quantum support vector machine for big data classification. Physical review letters, 113(13), 130503.
[29]
Cong, I., Choi, S., & Lukin, M. D. (2019). Quantum convolutional neural networks. Nature Physics, 15(12), 1273-1278.
[30]
Zhao, Z., Pozas-Kerstjens, A., Rebentrost, P., & Wittek, P. (2019). Bayesian deep learning on a quantum computer. Quantum Machine Intelligence, 1(1), 41-51.
[31]
Srinivasan, S., Gordon, G., & Boots, B. (2018, March). Learning hidden quantum Markov models. In International Conference on Artificial Intelligence and Statistics (pp. 1979-1987). PMLR.
[32]
Arunachalam, S., & Maity, R. (2020, November). Quantum boosting. In International Conference on Machine Learning (pp. 377-387). PMLR.
[33]
de Souza, L. S., de Carvalho, J. H., & Ferreira, T. A. (2019, October). Quantum Walk to Train a Classical Artificial Neural Network. In 2019 8th Brazilian Conference on Intelligent Systems (BRACIS) (pp. 836-841). IEEE.
[34]
Huggins, W., Patil, P., Mitchell, B., Whaley, K. B., & Stoudenmire, E. M. (2019). Towards quantum machine learning with tensor networks. Quantum Science and technology, 4(2), 024001.
[35]
Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., & Lloyd, S. (2017). Quantum machine learning. Nature, 549(7671), 195-202.
[36]
Khan, T. M., & Robles-Kelly, A. (2020). Machine learning: Quantum vs classical. IEEE Access, 8, 219275-219294.
[37]
Mishra, N., Kapil, M., Rakesh, H., Anand, A., Mishra, N., Warke, A., ... & Panigrahi, P. K. (2021). Quantum Machine Learning: A Review and Current Status. Data Management, Analytics and Innovation, 101-145.
[38]
Dunjko, V., & Wittek, P. (2020). A non-review of Quantum Machine Learning: trends and explorations. Quantum Views, 4, 32.
[39]
Ganguly, S. (2021). Quantum Machine Learning: An Applied Approach. Apress.
[40]
Casares, P. A. M., Campos, R., & Martin-Delgado, M. A. (2021). QFold: Quantum Walks and Deep Learning to Solve Protein Folding. arXiv preprint arXiv:2101.10279.

Cited By

View all
  • (2024)Quantum Machine Learning-based Lung Cancer Prediction Framework for Healthcare 4.02024 Asia Pacific Conference on Innovation in Technology (APCIT)10.1109/APCIT62007.2024.10673456(1-6)Online publication date: 26-Jul-2024
  • (2023)Advances in Quantum Machine Learning and Deep Learning for Image ClassificationNeurocomputing10.1016/j.neucom.2023.126843560:COnline publication date: 1-Dec-2023
  • (2022)Contemporary Quantum Computing Use Cases: Taxonomy, Review and ChallengesArchives of Computational Methods in Engineering10.1007/s11831-022-09809-530:1(615-638)Online publication date: 26-Sep-2022

Index Terms

  1. Quantum Machine Learning: Current State and Challenges
      Index terms have been assigned to the content through auto-classification.

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      PCI '21: Proceedings of the 25th Pan-Hellenic Conference on Informatics
      November 2021
      499 pages
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 22 February 2022

      Permissions

      Request permissions for this article.

      Check for updates

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Conference

      PCI 2021

      Acceptance Rates

      Overall Acceptance Rate 190 of 390 submissions, 49%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)111
      • Downloads (Last 6 weeks)1
      Reflects downloads up to 15 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Quantum Machine Learning-based Lung Cancer Prediction Framework for Healthcare 4.02024 Asia Pacific Conference on Innovation in Technology (APCIT)10.1109/APCIT62007.2024.10673456(1-6)Online publication date: 26-Jul-2024
      • (2023)Advances in Quantum Machine Learning and Deep Learning for Image ClassificationNeurocomputing10.1016/j.neucom.2023.126843560:COnline publication date: 1-Dec-2023
      • (2022)Contemporary Quantum Computing Use Cases: Taxonomy, Review and ChallengesArchives of Computational Methods in Engineering10.1007/s11831-022-09809-530:1(615-638)Online publication date: 26-Sep-2022

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      HTML Format

      View this article in HTML Format.

      HTML Format

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media