Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3514221.3526057acmconferencesArticle/Chapter ViewAbstractPublication PagesmodConference Proceedingsconference-collections
research-article

Graph Pattern Matching in GQL and SQL/PGQ

Published: 11 June 2022 Publication History
  • Get Citation Alerts
  • Abstract

    As graph databases become widespread, the International Organization for Standardization (ISO) and International Electrotechnical Commission (IEC) have approved a project to create GQL, a standard property graph query language. This complements the SQL/PGQ project, which specifies how to define graph views over a SQL tabular schema, and to run read-only queries against them.
    Both projects have been assigned to the ISO/IEC JTC1 SC32 working group for Database Languages, WG3, which continues to maintain and enhance SQL as a whole. This common responsibility helps enforce a policy that the identical core of both PGQ and GQL is a graph pattern matching sub-language, here termed GPML. The WG3 design process is also analyzed by an academic working group, part of the Linked Data Benchmark Council (LDBC), whose task is to produce a formal semantics of these graph data languages, which complements their standard specifications.
    This paper, written by members of WG3 and LDBC, presents the key elements of the GPML of SQL/PGQ and GQL in advance of the publication of these new standards.

    References

    [1]
    Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and Janet L. Wiener. 1997. The Lorel Query Language for Semistructured Data. Int. J. Digit. Libr., Vol. 1, 1 (1997), 68--88. https://doi.org/10.1007/s007990050005
    [2]
    Renzo Angles, Marcelo Arenas, Pablo Barceló, Peter A. Boncz, George H. L. Fletcher, Claudio Gutierrez, Tobias Lindaaker, Marcus Paradies, Stefan Plantikow, Juan F. Sequeda, Oskar van Rest, and Hannes Voigt. 2018. G-CORE: A Core for Future Graph Query Languages. In SIGMOD'18. ACM, 1421--1432.
    [3]
    Renzo Angles, Marcelo Arenas, Pablo Barceló, Aidan Hogan, Juan L. Reutter, and Domagoj Vrgoc. 2017. Foundations of Modern Query Languages for Graph Databases. ACM Comput. Surv., Vol. 50, 5 (2017), 68:1--68:40.
    [4]
    Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W. Hare, Jan Hidders, Victor E. Lee, Bei Li, Leonid Libkin, Wim Martens, Filip Murlak, Josh Perryman, Ognjen Savkovic, Michael Schmidt, Juan F. Sequeda, Slawek Staworko, and Dominik Tomaszuk. 2021. PG-Keys: Keys for Property Graphs. In SIGMOD '21: International Conference on Management of Data. ACM, 2423--2436.
    [5]
    Marcelo Arenas, Sebastián Conca, and Jorge Pérez. 2012. Counting beyond a Yottabyte, or how SPARQL 1.1 property paths will prevent adoption of the standard. In World Wide Web (WWW). ACM, 629--638.
    [6]
    Pablo Barceló. 2013. Querying graph databases. In Principles of Database Systems (PODS). ACM, 175--188.
    [7]
    Pablo Barceló, Leonid Libkin, Anthony Widjaja Lin, and Peter T. Wood. 2012. Expressive languages for path queries over graph-structured data. ACM Trans. Database Syst., Vol. 37, 4 (2012), 31:1--31:46.
    [8]
    Pablo Barceló, Leonid Libkin, and Juan L. Reutter. 2014. Querying regular graph patterns. Journal of the ACM, Vol. 61, 1 (2014), 8:1--8:54.
    [9]
    Béla Bollobás. 2013. Modern Graph Theory. Vol. 184. Springer Science & Business Media.
    [10]
    Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François Yergeau. 2008. Extensible Markup Language (XML) 1.0 (Fifth Edition). W3C Recommendation. https://www.w3.org/TR/2008/REC-xml-20081126/
    [11]
    Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2000. Containment of Conjunctive Regular Path Queries with Inverse. In Knowl. Representation & Reasoning (KR). Morgan Kaufmann, 176--185.
    [12]
    Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 2003. Reasoning on regular path queries. SIGMOD Record, Vol. 32, 4 (2003), 83--92.
    [13]
    Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Moshe Y. Vardi. 1999. Rewriting of Regular Expressions and Regular Path Queries. In Proceedings of the Eighteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, May 31 - June 2, 1999, Philadelphia, Pennsylvania, USA, Victor Vianu and Christos H. Papadimitriou (Eds.). ACM Press, 194--204. https://doi.org/10.1145/303976.303996
    [14]
    Isabel F. Cruz, Alberto O. Mendelzon, and Peter T. Wood. 1987. A Graphical Query Language Supporting Recursion. In Proceedings of the Association for Computing Machinery Special Interest Group on Management of Data 1987 Annual Conference, San Francisco, CA, USA, May 27--29, 1987, Umeshwar Dayal and Irving L. Traiger (Eds.). ACM Press, 323--330. https://doi.org/10.1145/38713.38749
    [15]
    Richard Cyganiak, David Wood, and Markus Lanthaler. 2014. RDF 1.1 Concepts and Abstract Syntax. W3C Recommendation. https://www.w3.org/TR/rdf11-concepts/
    [16]
    Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2019. TigerGraph: A Native MPP Graph Database. showeprint[arXiv]1901.08248 http://arxiv.org/abs/1901.08248
    [17]
    Alin Deutsch, Yu Xu, Mingxi Wu, and Victor E. Lee. 2020. Aggregation Support for Modern Graph Analytics in TigerGraph. In Proceedings of the 2020 International Conference on Management of Data, SIGMOD Conference 2020, online conference [Portland, OR, USA], June 14--19, 2020, David Maier, Rachel Pottinger, AnHai Doan, Wang-Chiew Tan, Abdussalam Alawini, and Hung Q. Ngo (Eds.). ACM, 377--392. https://doi.org/10.1145/3318464.3386144
    [18]
    Mary F. Fernandez, Daniela Florescu, Alon Y. Levy, and Dan Suciu. 1997. A Query Language for a Web-Site Management System. SIGMOD Rec., Vol. 26, 3 (1997), 4--11. https://doi.org/10.1145/262762.262763
    [19]
    Diego Figueira, Adwait Godbole, Shankara Narayanan Krishna, Wim Martens, Matthias Niewerth, and Tina Trautner. 2020. Containment of Simple Conjunctive Regular Path Queries. In International Conference on Principles of Knowledge Representation and Reasoning (KR). 371--380.
    [20]
    Nadime Francis, Alastair Green, Paolo Guagliardo, Leonid Libkin, Tobias Lindaaker, Victor Marsault, Stefan Plantikow, Mats Rydberg, Petra Selmer, and Andrés Taylor. 2018. Cypher: An Evolving Query Language for Property Graphs. In Proceedings of the 2018 International Conference on Management of Data. Association for Computing Machinery, New York, NY, USA, 1433--1445. https://doi.org/10.1145/3183713.3190657
    [21]
    Alastair Green, Paolo Guagliardo, and Leonid Libkin. 2021. Property graphs and paths in GQL: Mathematical definitions. Technical Reports TR-2021-01. Linked Data Benchmark Council (LDBC). https://doi.org/10.54285/ldbc.TZJP7279
    [22]
    William L. Hamilton. 2020. Graph Representation Learning. Synthesis Lectures on Artificial Intelligence and Machine Learning, Vol. 14, 3 (2020), 1--159.
    [23]
    Steve Harris and Andy Seaborne. 2013. SPARQL 1.1 Query Language. W3C Recommendation. http://www.w3.org/TR/sparql11-query/
    [24]
    Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d'Amato, Gerard de Melo, Claudio Gutié rrez, Sabrina Kirrane, José Emilio Labra Gayo, Roberto Navigli, Sebastian Neumaier, Axel-Cyrille Ngonga Ngomo, Axel Polleres, Sabbir M. Rashid, Anisa Rula, Lukas Schmelzeisen, Juan F. Sequeda, Steffen Staab, and Antoine Zimmermann. 2021. Knowledge Graphs. ACM Comput. Surv., Vol. 54, 4 (2021), 71:1--71:37. https://doi.org/10.1145/3447772
    [25]
    John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Zidek, Anna Potapenko, Alex Bridgland, Clemens Meyer, Simon A A Kohl, Andrew J Ballard, Andrew Cowie, Bernardino Romera-Paredes, Stanislav Nikolov, Rishub Jain, Jonas Adler, Trevor Back, Stig Petersen, David Reiman, Ellen Clancy, Michal Zielinski, Martin Steinegger, Michalina Pacholska, Tamas Berghammer, Sebastian Bodenstein, David Silver, Oriol Vinyals, Andrew W Senior, Koray Kavukcuoglu, Pushmeet Kohli, and Demis Hassabis. 2021. Highly accurate protein structure prediction with AlphaFold. Nature, Vol. 596, 7873 (Aug. 2021), 583--589.
    [26]
    Property Graph Query Language. 2021. PGQL 1.4 Specification. https://pgql-lang.org/spec/1.4/
    [27]
    Leonid Libkin, Wim Martens, and Domagoj Vrgovc. 2016. Querying Graphs with Data. Journal of the ACM, Vol. 63, 2 (2016), 14:1--14:53.
    [28]
    Katja Losemann and Wim Martens. 2013. The complexity of regular expressions and property paths in SPARQL. ACM Trans. Database Syst., Vol. 38, 4 (2013), 24.
    [29]
    Yao Ma and Jiliang Tang. 2021. Deep Learning on Graphs .Cambridge University Press.
    [30]
    Wim Martens and Tina Trautner. 2018. Evaluation and Enumeration Problems for Regular Path Queries. In International Conference on Database Theory (ICDT) (LIPIcs, Vol. 98). Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 19:1--19:21.
    [31]
    Alberto O. Mendelzon, George A. Mihaila, and Tova Milo. 1996. Querying the World Wide Web. In Proceedings of the Fourth International Conference on Parallel and Distributed Information Systems, December 18--20, 1996, Miami Beach, Florida, USA. IEEE Computer Society, 80--91. https://doi.org/10.1109/PDIS.1996.568671
    [32]
    Alberto O. Mendelzon and Peter T. Wood. 1989. Finding Regular Simple Paths in Graph Databases. In Proceedings of the Fifteenth International Conference on Very Large Data Bases, August 22--25, 1989, Amsterdam, The Netherlands. Morgan Kaufmann Publishers Inc., 185--193.
    [33]
    Alberto O. Mendelzon and Peter T. Wood. 1995. Finding Regular Simple Paths in Graph Databases. SIAM J. Comput., Vol. 24, 6 (1995), 1235--1258.
    [34]
    openCypher. 2017. Cypher Query Language Reference, Version 9. https://github.com/opencypher/openCypher/blob/master/docs/openCypher9.pdf
    [35]
    openCypher. 2021. Usage of Cypher. https://opencypher.org/projects/
    [36]
    Eric Prud'hommeaux and Andy Seaborne. 2008. SPARQL Query Language for RDF. W3C Recommendation. http://www.w3.org/TR/rdf-sparql-query/
    [37]
    Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017a. XML Path Language (XPath) 3.1. W3C Recommendation. https://www.w3.org/TR/xquery-31/
    [38]
    Jonathan Robie, Michael Dyck, and Josh Spiegel. 2017b. XQuery 3.1: An XML Query Language. W3C Recommendation. https://www.w3.org/TR/xquery-31/
    [39]
    Sherif Sakr, Angela Bonifati, Hannes Voigt, Alexandru Iosup, Khaled Ammar, Renzo Angles, Walid G. Aref, Marcelo Arenas, Maciej Besta, Peter A. Boncz, Khuzaima Daudjee, Emanuele Della Valle, Stefania Dumbrava, Olaf Hartig, Bernhard Haslhofer, Tim Hegeman, Jan Hidders, Katja Hose, Adriana Iamnitchi, Vasiliki Kalavri, Hugo Kapp, Wim Martens, M. TamerÖzsu, Eric Peukert, Stefan Plantikow, Mohamed Ragab, Matei Ripeanu, Semih Salihoglu, Christian Schulz, Petra Selmer, Juan F. Sequeda, Joshua Shinavier, Gábor Szárnyas, Riccardo Tommasini, Antonino Tumeo, Alexandru Uta, Ana Lucia Varbanescu, Hsiang-Yun Wu, Nikolay Yakovets, Da Yan, and Eiko Yoneki. 2021. The future is big graphs: a community view on graph processing systems. Commun. ACM, Vol. 64, 9 (2021), 62--71. https://doi.org/10.1145/3434642
    [40]
    TigerGraph Team. 2021. TigerGraph Documentation -- version 3.1. https://docs.tigergraph.com/
    [41]
    Oskar van Rest, Sungpack Hong, Jinha Kim, Xuming Meng, and Hassan Chafi. 2016. PGQL: a property graph query language. In Proceedings of the Fourth International Workshop on Graph Data Management Experiences and Systems. ACM, 1--6.
    [42]
    Peter T. Wood. 2012. Query languages for graph databases. SIGMOD Record, Vol. 41, 1 (2012), 50--60.

    Cited By

    View all
    • (2024)Materialized View Selection & View-Based Query Planning for Regular Path QueriesProceedings of the ACM on Management of Data10.1145/36549552:3(1-26)Online publication date: 30-May-2024
    • (2024)Implementation Strategies for Views over Property GraphsProceedings of the ACM on Management of Data10.1145/36549492:3(1-26)Online publication date: 30-May-2024
    • (2024)Worst-Case-Optimal Similarity Joins on Graph DatabasesProceedings of the ACM on Management of Data10.1145/36392942:1(1-26)Online publication date: 26-Mar-2024
    • Show More Cited By

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    SIGMOD '22: Proceedings of the 2022 International Conference on Management of Data
    June 2022
    2597 pages
    ISBN:9781450392495
    DOI:10.1145/3514221
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 11 June 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. GQL
    2. SQL
    3. graph database
    4. pattern matching
    5. property graph
    6. query language
    7. standardization

    Qualifiers

    • Research-article

    Funding Sources

    • EPSRC
    • NCN
    • ANID
    • DFG
    • ANR

    Conference

    SIGMOD/PODS '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 785 of 4,003 submissions, 20%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)418
    • Downloads (Last 6 weeks)36

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Materialized View Selection & View-Based Query Planning for Regular Path QueriesProceedings of the ACM on Management of Data10.1145/36549552:3(1-26)Online publication date: 30-May-2024
    • (2024)Implementation Strategies for Views over Property GraphsProceedings of the ACM on Management of Data10.1145/36549492:3(1-26)Online publication date: 30-May-2024
    • (2024)Worst-Case-Optimal Similarity Joins on Graph DatabasesProceedings of the ACM on Management of Data10.1145/36392942:1(1-26)Online publication date: 26-Mar-2024
    • (2024)The Future of Graph AnalyticsCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3658369(544-545)Online publication date: 9-Jun-2024
    • (2024)MillenniumDB: A Multi-modal, Multi-model Graph DatabaseCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3654757(496-499)Online publication date: 9-Jun-2024
    • (2024)Querying Graph Databases at ScaleCompanion of the 2024 International Conference on Management of Data10.1145/3626246.3654695(585-589)Online publication date: 9-Jun-2024
    • (2023)Mammoths are Slow: The Overlooked Transactions of Graph DataProceedings of the VLDB Endowment10.14778/3636218.363624117:4(904-911)Online publication date: 1-Dec-2023
    • (2023)Declarative Sub-Operators for Universal Data ProcessingProceedings of the VLDB Endowment10.14778/3611479.361153916:11(3461-3474)Online publication date: 24-Aug-2023
    • (2023)Representing Paths in Graph Database Pattern MatchingProceedings of the VLDB Endowment10.14778/3587136.358715116:7(1790-1803)Online publication date: 8-May-2023
    • (2023)Knowledge Graphs QueryingACM SIGMOD Record10.1145/3615952.361595652:2(18-29)Online publication date: 11-Aug-2023
    • Show More Cited By

    View Options

    Get Access

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media