Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3519270.3538442acmconferencesArticle/Chapter ViewAbstractPublication PagespodcConference Proceedingsconference-collections
research-article
Public Access

Optimal Synchronous Approximate Agreement with Asynchronous Fallback

Published: 21 July 2022 Publication History

Abstract

Approximate Agreement (AA) allows a set of n parties that start with real-valued inputs to obtain values that are at most within a parameter ε > 0 from each other and within the range of their inputs. Existing AA protocols, both for the synchronous network model (where any message is delivered within a known delay Δ time) and the asynchronous network model, are secure when up to t < n/3 of the parties are corrupted and require no initial setup (such as a public-key infrastructure (PKI) for signatures). We consider AA protocols where a PKI is available, and show the first AA protocol that achieves simultaneously security against ts corruptions when the network is synchronous and ta corruptions when the network is asynchronous, for any 0 ≤ ta < n/3 ≤ ts < n/2 such that ta + 2 · ts < n. We further show that our protocol is optimal by proving that achieving AA for ta +2·ts ≥ n is impossible (even with setup). Remarkably, this is also the first AA protocol that tolerates more than n/3 corruptions in the synchronous network model.

Supplementary Material

MP4 File (S2-T2.mp4)
Presentation video

References

[1]
Ittai Abraham, Yonatan Amit, and Danny Dolev. 2005. Optimal Resilience Asynchronous Approximate Agreement. In Principles of Distributed Systems, Teruo Higashino (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 229--239.
[2]
Dan Alistarh, Faith Ellen, and Joel Rybicki. 2021. Wait-Free Approximate Agreement on Graphs. In Structural Information and Communication Complexity, Tomasz Jurdzi'ski and Stefan Schmid (Eds.). Springer International Publishing, Cham, 87--105. https://doi.org/10.1007/978--3-030--79527--6_6
[3]
Michael Ben-Or, Danny Dolev, and Ezra N. Hoch. 2010. Brief Announcement: Simple Gradecast Based Algorithms. In Distributed Computing, Nancy A. Lynch and Alexander A. Shvartsman (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 194--197.
[4]
Erica Blum, Jonathan Katz, and Julian Loss. 2019. Synchronous Consensus with Optimal Asynchronous Fallback Guarantees. In Theory of Cryptography (Lecture Notes in Computer Science, Vol. 11891). Springer International Publishing, Cham, 131--150. https://doi.org/10.1007/978--3-030--36030--6_6
[5]
Erica Blum, Jonathan Katz, and Julian Loss. 2021. Tardigrade: An Atomic Broadcast Protocol for Arbitrary Network Conditions. In Advances in Cryptology -- ASIACRYPT 2021, Mehdi Tibouchi and Huaxiong Wang (Eds.). Springer International Publishing, Cham, 547--572. https://doi.org/10.1007/978--3-030--92075--3_19
[6]
Erica Blum, Chen-Da Liu-Zhang, and Julian Loss. 2020. Always Have a Backup Plan: Fully Secure Synchronous MPC with Asynchronous Fallback. In Advances in Cryptology -- CRYPTO 2020, Daniele Micciancio and Thomas Ristenpart (Eds.). Springer International Publishing, Cham, 707--731.
[7]
Elette Boyle, Ran Cohen, and Aarushi Goel. 2021. Breaking the -Bit Barrier: Byzantine Agreement with Polylog Bits Per Party. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC'21). Association for Computing Machinery, New York, NY, USA, 319--330. https://doi.org/10.1145/3465084.3467897
[8]
Christian Cachin, Klaus Kursawe, Frank Petzold, and Victor Shoup. 2001. Secure and Efficient Asynchronous Broadcast Protocols. In Proceedings of the 21st Annual International Cryptology Conference on Advances in Cryptology (CRYPTO '01). Springer-Verlag, Berlin, Heidelberg, 524--541.
[9]
Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. 2016. Probabilistic Termination and Composability of Cryptographic Protocols. In CRYPTO 2016, Part III (LNCS, Vol. 9816), Matthew Robshaw and Jonathan Katz (Eds.). Springer, Heidelberg, Santa Barbara, CA, USA, 240--269. https://doi.org/10.1007/978--3- 662--53015--3_9
[10]
Ran Cohen, Sandro Coretti, Juan A. Garay, and Vassilis Zikas. 2017. Round- Preserving Parallel Composition of Probabilistic-Termination Cryptographic Protocols. In ICALP 2017 (LIPIcs, Vol. 80), Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl (Eds.). Schloss Dagstuhl,Warsaw, Poland, 37:1-- 37:15. https://doi.org/10.4230/LIPIcs.ICALP.2017.37
[11]
Giovanni Deligios, Martin Hirt, and Chen-Da Liu-Zhang. 2021. Round-Efficient Byzantine Agreement and Multi-Party Computation with Asynchronous Fallback. In Theory of Cryptography: 19th International Conference, TCC 2021, Raleigh, NC, USA, November 8--11, 2021, Proceedings, Part I (Raleigh, NC, USA). Springer-Verlag, Berlin, Heidelberg, 623--653. https://doi.org/10.1007/978--3-030--90459--3_21
[12]
Danny Dolev, Nancy A. Lynch, Shlomit S. Pinter, EugeneW. Stark, and William E. Weihl. 1986. Reaching Approximate Agreement in the Presence of Faults. J. ACM 33, 3 (May 1986), 499--516. https://doi.org/10.1145/5925.5931
[13]
Danny Dolev and H. Raymond Strong. 1983. Authenticated algorithms for Byzantine agreement. SIAM J. Comput. 12, 4 (1983), 656--666.
[14]
Alan David Fekete. 1987. Asynchronous Approximate Agreement. In 6th ACM PODC, Fred B. Schneider (Ed.). ACM, Vancouver, BC, Canada, 64--76. https: //doi.org/10.1145/41840.41846
[15]
Alan David Fekete. 1990. Asymptotically optimal algorithms for approximate agreement. Distributed Computing 4, 1 (1990), 9--29.
[16]
Michael J Fischer, Nancy A Lynch, and Michael S Paterson. 1985. Impossibility of distributed consensus with one faulty process. Journal of the ACM (JACM) 32, 2 (1985), 374--382.
[17]
Matthias Függer, Thomas Nowak, and Manfred Schwarz. 2021. Tight bounds for asymptotic and approximate consensus. Journal of the ACM (JACM) 68, 6 (2021), 1--35.
[18]
Guy Golan-Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, and Alin Tomescu. 2019. SBFT: A Scalable and Decentralized Trust Infrastructure. In 49th Annual IEEE/IFIP International Conference on Dependable Systems and Networks, DSN 2019, Portland, OR, USA, June 24--27, 2019. IEEE Computer Society, Los Alamitos, CA, USA, 568--580. https://doi.org/10.1109/DSN.2019.00063
[19]
Joseph Y. Halpern, Barbara Simons, H. Raymond Strong, and Danny Dolev. 1984. Fault-Tolerant Clock Synchronization. In 3rd ACM PODC, Robert L. Probert, Nancy A. Lynch, and Nicola Santoro (Eds.). ACM, Vancouver, BC, Canada, 89-- 102. https://doi.org/10.1145/800222.806739
[20]
Martin Hirt, Ard Kastrati, and Chen-Da Liu-Zhang. 2021. Multi-Threshold Asynchronous Reliable Broadcast and Consensus. In 24th International Conference on Principles of Distributed Systems (OPODIS 2020) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 184), Quentin Bramas, Rotem Oshman, and Paolo Romano (Eds.). Schloss Dagstuhl--Leibniz-Zentrum für Informatik, Dagstuhl, Germany, 6:1--6:16. https://doi.org/10.4230/LIPIcs.OPODIS.2020.6
[21]
Leslie Lamport and P. M. Melliar-Smith. 1985. Synchronizing Clocks in the Presence of Faults. J. ACM 32, 1 (Jan. 1985), 52--78. https://doi.org/10.1145/2455. 2457
[22]
Jérémy Ledent. 2021. Brief Announcement: Variants of Approximate Agreement on Graphs and Simplicial Complexes. In Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing (Virtual Event, Italy) (PODC'21). Association for Computing Machinery, New York, NY, USA, 427--430. https: //doi.org/10.1145/3465084.3467946
[23]
Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. 2006. On the Composition of Authenticated Byzantine Agreement. J. ACM 53, 6 (nov 2006), 881--917. https: //doi.org/10.1145/1217856.1217857
[24]
Darya Melnyk and Roger Wattenhofer. 2018. Byzantine Agreement with Interval Validity. In 2018 IEEE 37th Symposium on Reliable Distributed Systems (SRDS). IEEE Computer Society, Los Alamitos, CA, USA, 251--260. https://doi.org/10. 1109/SRDS.2018.00036
[25]
Hammurabi Mendes and Maurice Herlihy. 2013. Multidimensional approximate agreement in Byzantine asynchronous systems. In 45th ACM STOC, Dan Boneh, Tim Roughgarden, and Joan Feigenbaum (Eds.). ACM Press, Palo Alto, CA, USA, 391--400. https://doi.org/10.1145/2488608.2488657
[26]
Atsuki Momose and Ling Ren. 2021. Multi-Threshold Byzantine Fault Tolerance. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications Security (Virtual Event, Republic of Korea) (CCS '21). Association for Computing Machinery, New York, NY, USA, 1686--1699. https: //doi.org/10.1145/3460120.3484554
[27]
Thomas Nowak and Joel Rybicki. 2019. Byzantine Approximate Agreement on Graphs. In 33rd International Symposium on Distributed Computing (DISC 2019) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 146), Jukka Suomela (Ed.). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 29:1--29:17. https://doi.org/10.4230/LIPIcs.DISC.2019.29
[28]
David Stolz and Roger Wattenhofer. 2016. Byzantine Agreement with Median Validity. In 19th International Conference on Principles of Distributed Systems (OPODIS 2015) (Leibniz International Proceedings in Informatics (LIPIcs), Vol. 46), Emmanuelle Anceaume, Christian Cachin, and Maria Potop-Butucaru (Eds.). Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany, 1--14. https://doi.org/10.4230/LIPIcs.OPODIS.2015.22
[29]
Nitin H. Vaidya and Vijay K. Garg. 2013. Byzantine vector consensus in complete graphs. In 32nd ACM PODC, Panagiota Fatourou and Gadi Taubenfeld (Eds.). ACM, Montreal, QC, 65--73. https://doi.org/10.1145/2484239.2484256
[30]
Jennifer LundeliusWelch and Nancy Lynch. 1988. A new fault-tolerant algorithm for clock synchronization. Information and Computation 77, 1 (1988), 1--36. https://doi.org/10.1016/0890--5401(88)90043-0

Cited By

View all
  • (2024)Brief Announcement: Communication-Optimal Convex AgreementProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662782(492-495)Online publication date: 17-Jun-2024
  • (2024)Delphi: Efficient Asynchronous Approximate Agreement for Distributed Oracles2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)10.1109/DSN58291.2024.00051(456-469)Online publication date: 24-Jun-2024
  • (2024)Closing the Efficiency Gap Between Synchronous and Network-Agnostic ConsensusAdvances in Cryptology – EUROCRYPT 202410.1007/978-3-031-58740-5_15(432-461)Online publication date: 26-May-2024
  • Show More Cited By

Index Terms

  1. Optimal Synchronous Approximate Agreement with Asynchronous Fallback

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    PODC'22: Proceedings of the 2022 ACM Symposium on Principles of Distributed Computing
    July 2022
    509 pages
    ISBN:9781450392624
    DOI:10.1145/3519270
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 21 July 2022

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. approximate agreement
    2. hybrid protocols

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    PODC '22
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 740 of 2,477 submissions, 30%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)95
    • Downloads (Last 6 weeks)11
    Reflects downloads up to 30 Aug 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Brief Announcement: Communication-Optimal Convex AgreementProceedings of the 43rd ACM Symposium on Principles of Distributed Computing10.1145/3662158.3662782(492-495)Online publication date: 17-Jun-2024
    • (2024)Delphi: Efficient Asynchronous Approximate Agreement for Distributed Oracles2024 54th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN)10.1109/DSN58291.2024.00051(456-469)Online publication date: 24-Jun-2024
    • (2024)Closing the Efficiency Gap Between Synchronous and Network-Agnostic ConsensusAdvances in Cryptology – EUROCRYPT 202410.1007/978-3-031-58740-5_15(432-461)Online publication date: 26-May-2024
    • (2023)Perfectly-Secure Synchronous MPC With Asynchronous Fallback GuaranteesIEEE Transactions on Information Theory10.1109/TIT.2023.326444469:8(5386-5425)Online publication date: 1-Aug-2023
    • (2023)Network Agnostic MPC with Statistical SecurityTheory of Cryptography10.1007/978-3-031-48618-0_3(63-93)Online publication date: 29-Nov-2023
    • (2023)Synchronous Perfectly Secure Message Transmission with Optimal Asynchronous Fallback GuaranteesFinancial Cryptography and Data Security10.1007/978-3-031-47754-6_5(77-93)Online publication date: 1-May-2023
    • (2023)TADA: A Toolkit for Approximate Distributed AgreementDistributed Applications and Interoperable Systems10.1007/978-3-031-35260-7_1(3-19)Online publication date: 19-Jun-2023
    • (2022)State Machine Replication Under Changing Network ConditionsAdvances in Cryptology – ASIACRYPT 202210.1007/978-3-031-22963-3_23(681-710)Online publication date: 5-Dec-2022

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media