Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3519935.3519977acmconferencesArticle/Chapter ViewAbstractPublication PagesstocConference Proceedingsconference-collections
research-article

Deterministic, near-linear πœ€-approximation algorithm for geometric bipartite matching

Published: 10 June 2022 Publication History

Abstract

Given two point sets A and B in ℝd of size n each, for some constant dimension dβ‰₯ 1, and a parameter Ξ΅>0, we present a deterministic algorithm that computes, in nΒ·(Ξ΅βˆ’1 logn)O(d) time, a perfect matching between A and B whose cost is within a (1+Ξ΅) factor of the optimal matching under any β„“p-norm. Although a Monte-Carlo algorithm with a similar running time is proposed by Raghvendra and AgarwalΒ [J. ACM 2020], the best-known deterministic Ξ΅-approximation algorithm takes Ξ©(n3/2) time. Our algorithm constructs a (refinement of a) tree cover of ℝd, and we develop several new tools to apply a tree-cover based approach to compute an Ξ΅-approximate perfect matching.

References

[1]
P. K. Agarwal, H.-C. Chang, and A. Xiao. Efficient algorithms for geometric partial matching. In Proc. 35th Intl. Sympos. Comput. Geom., pages 6:1–6:14, 2019.
[2]
P. K. Agarwal, A. Efrat, and M. Sharir. Vertical decomposition of shallow levels in 3-dimensional arrangements and its applications. SIAM J. Comput., 29(3):42, 2000.
[3]
P. K. Agarwal, K. Fox, D. Panigrahi, K. R. Varadarajan, and A. Xiao. Faster algorithms for the geometric transportation problem. In Proc. 33rd Intl. Sympos. Comput. Geom., pages 7:1–7:16, 2017.
[4]
P. K. Agarwal and R. Sharathkumar. Approximation algorithms for bipartite matching with metric and geometric costs. In Proc. 46th Annu. ACM Sympos. Theory Comput., pages 555–564, 2014.
[5]
P. K. Agarwal and K. Varadarajan. A near-linear constant-factor approximation for Euclidean bipartite matching? In Proc. 20th Annu. Sympos. Comput. Geom., pages 247–252, 2004.
[6]
A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for geometric graph problems. In Proc. 46th Annu. ACM Sympos. Theory Comput., pages 574–583, 2014.
[7]
Y. Bartal, N. Fandina, and O. Neiman. Covering metric spaces by few trees. In Proc. 46th Intl. Colloq. Auto., Lang., and Program., pages 20:1–20:16, 2019.
[8]
Y. Bartal, N. Linial, M. Mendel, and A. Naor. On metric Ramsey-type phenomena. Annals of Mathematics, 162:643–709, 2005.
[9]
G. Beugnot, A. Genevay, K. Greenewald, and J. Solomon. Improving approximate optimal transport distances using quantization. arXiv:2102.12731, 2021.
[10]
J. v. d. Brand, Y. T. Lee, D. Nanongkai, R. Peng, T. Saranurak, A. Sidford, Z. Song, and D. Wang. Bipartite matching in nearly-linear time on moderately dense graphs. In Proc. 61st IEEE Annu. Sympos. Found. Comp. Sci., pages 919–930, 2020.
[11]
T. M. Chan, S. Har-Peled, and M. Jones. On locality-sensitive orderings and their applications. In Proc. 10th Innov. Theor. Comp. Sci. Conf., pages 21:1–21:17, 2019.
[12]
M. Charikar. Similarity estimation techniques from rounding algorithms. In Proc. 34th Annu. ACM Sympos. Theory Comput., pages 380–388, 2002.
[13]
K. Fox and J. Lu. A near-linear time approximation scheme for geometric transportation with arbitrary supplies and spread. In Proc. 36th Intl. Sympos. Comput. Geom., pages 45:1–45:18, 2020.
[14]
M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM, 34(3):596–615, 1987.
[15]
H. N. Gabow. The weighted matching approach to maximum cardinality matching. arXiv:1703.03998 [cs], Mar. 2017.
[16]
H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for network problems. SIAM J. Comput., 18:1013–1036, 1989.
[17]
H. N. Gabow and R. E. Tarjan. Faster scaling algorithms for general graph-matching problems. J. ACM, 38(4):815–853, 1991.
[18]
A. Gupta, A. Kumar, and R. Rastogi. Traveling with a Pez dispenser (or, routing issues in MPLS). SIAM J. Comput., 34(2):453–474, 2005.
[19]
J. Hopcroft and R. Karp. An n^5/2 algorithm for maximum matchings in bipartite graphs. SIAM J. Comput., 2(4):225–231, 1973.
[20]
P. Indyk. A near linear time constant factor approximation for Euclidean bichromatic matching (cost). In Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algo., pages 29–32, 2007.
[21]
H. Kaplan, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Dynamic planar voronoi diagrams for general distance functions and their algorithmic applications. Discret. Comput. Geom., 64(3):838–904, 2020.
[22]
A. B. Khesin, A. Nikolov, and D. Paramonov. Preconditioning for the geometric transportation problem. In Proc. 35th Intl. Sympos. Comput. Geom., pages 15:1–15:14, 2019.
[23]
N. Lahn and S. Raghvendra. An ~O(n^5/4) time Ξ΅-approximation algorithm for rms matching in a plane. In Proc. 31st Annu. ACM-SIAM Sympos. Discrete Algo., pages 869–888, 2021.
[24]
H. Le and S. Solomon. Truly optimal Euclidean spanners. In Proc. 60th IEEE Annu. Sympos. Found. Comp. Sci., pages 1078–1100, 2019.
[25]
H. Liu, X. Gu, and D. Samaras. A two-step computation of the exact GAN Wasserstein distance. In Proc. 35th Intl. Conf. Machine Learn., pages 3159–3168, 2018.
[26]
A. Madry. Navigating central path with electrical flows: From flows to matchings, and back. In Proc. 54th IEEE Annu. Sympos. Found. Comp. Sci., pages 253–262, 2013.
[27]
C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Inc., 1982.
[28]
G. PeyrΓ© and M. Cuturi. Computational optimal transport. Found. Trends Mach. Learn., 11(5-6):355–607, 2019.
[29]
S. Raghvendra and P. K. Agarwal. A near-linear time Ξ΅-approximation algorithm for geometric bipartite matching. J. ACM, 67(3):1–19, June 2020.
[30]
Y. Rubner, C. Tomasi, and L. J. Guibas. The earth mover’s distance as a metric for image retrieval. Intl. J. Comp. Vision, 40(2):99–121, 2000.
[31]
R. Sharathkumar. A sub-quadratic algorithm for bipartite matching of planar points with bounded integer coordinates. In Proc. 29th Annu. Sympos. Comput. Geom., pages 9–16, 2013.
[32]
R. Sharathkumar and P. K. Agarwal. Algorithms for transportation problem in geometric settings. In Proc. 23rd Annu. ACM-SIAM Sympos. Discrete Algo., pages 306–317, 2012.
[33]
J. Solomon, F. De Goes, G. PeyrΓ©, M. Cuturi, A. Butscher, A. Nguyen, T. Du, and L. Guibas. Convolutional Wasserstein distances: Efficient optimal transportation on geometric domains. ACM Trans. Graphics, 34(4):66:1–66:11, 2015.
[34]
K. R. Varadarajan. A divide-and-conquer algorithm for min-cost perfect matching in the plane. In Proc. 39th Annu. IEEE Sympos. Found. Comp. Sci., pages 320–331, 1998.
[35]
K. R. Varadarajan and P. K. Agarwal. Approximation algorithms for bipartite and non-bipartite matching in the plane. In Proc. 10th Annu. ACM-SIAM Sympos. Discrete Algo., pages 805–814, 1999.
[36]
V. V. Vazirani. A proof of the MV matching algorithm. arXiv:2012.03582, 2020.

Cited By

View all
  • (2024)Dynamic Euclidean Bottleneck MatchingTheoretical Computer Science10.1016/j.tcs.2024.114727(114727)Online publication date: Jul-2024
  • (2023)A deterministic near-linear time approximation scheme for geometric transportation2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00078(1301-1315)Online publication date: 6-Nov-2023

Index Terms

  1. Deterministic, near-linear 𝜀-approximation algorithm for geometric bipartite matching

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Conferences
      STOC 2022: Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing
      June 2022
      1698 pages
      ISBN:9781450392648
      DOI:10.1145/3519935
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Sponsors

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 10 June 2022

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. augmenting path
      2. compression
      3. matching
      4. regularizer
      5. tree cover

      Qualifiers

      • Research-article

      Conference

      STOC '22
      Sponsor:

      Acceptance Rates

      Overall Acceptance Rate 1,469 of 4,586 submissions, 32%

      Upcoming Conference

      STOC '25
      57th Annual ACM Symposium on Theory of Computing (STOC 2025)
      June 23 - 27, 2025
      Prague , Czech Republic

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)81
      • Downloads (Last 6 weeks)6
      Reflects downloads up to 11 Jan 2025

      Other Metrics

      Citations

      Cited By

      View all
      • (2024)Dynamic Euclidean Bottleneck MatchingTheoretical Computer Science10.1016/j.tcs.2024.114727(114727)Online publication date: Jul-2024
      • (2023)A deterministic near-linear time approximation scheme for geometric transportation2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00078(1301-1315)Online publication date: 6-Nov-2023

      View Options

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media