Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3579371.3589044acmconferencesArticle/Chapter ViewAbstractPublication PagesiscaConference Proceedingsconference-collections
research-article
Public Access

Enabling High Performance Debugging for Variational Quantum Algorithms using Compressed Sensing

Published: 17 June 2023 Publication History

Abstract

Variational quantum algorithms (VQAs) can potentially solve practical problems using contemporary Noisy Intermediate Scale Quantum (NISQ) computers. VQAs find near-optimal solutions in the presence of qubit errors by classically optimizing a loss function computed by parameterized quantum circuits. However, developing and testing VQAs is challenging due to the limited availability of quantum hardware, their high error rates, and the significant overhead of classical simulations. Furthermore, VQA researchers must pick the right initialization for circuit parameters, utilize suitable classical optimizer configurations, and deploy appropriate error mitigation methods. Unfortunately, these tasks are done in an ad-hoc manner today, as there are no software tools to configure and tune the VQA hyperparameters.
In this paper, we present OSCAR (cOmpressed Sensing based Cost lAndscape Reconstruction) to help configure: 1) correct initialization, 2) noise mitigation techniques, and 3) classical optimizers to maximize the quality of the solution on NISQ hardware. OSCAR enables efficient debugging and performance tuning by providing users with the loss function landscape without running thousands of quantum circuits as required by the grid search. Using OSCAR, we can accurately reconstruct the complete cost landscape with up to 100X speedup. Furthermore, OSCAR can compute an optimizer function query in an instant by interpolating a computed landscape, thus enabling the trial run of a VQA configuration with considerably reduced overhead.

References

[1]
X. Bonet-Monroig, R. Sagastizabal, M. Singh, and T. E. O'Brien. [n. d.]. Low-cost error mitigation by symmetry verification. 98, 6 ([n. d.]), 062339. arXiv:1807.10050 [quant-ph]
[2]
Sergey Bravyi, Sarah Sheldon, Abhinav Kandala, David C. Mckay, and Jay M. Gambetta. 2021. Mitigating measurement errors in multiqubit experiments. Physical Review A 103, 4 (April 2021).
[3]
T.-Q. Cai, X.-Y. Han, Y.-K. Wu, Y.-L. Ma, J.-H. Wang, Z.-L. Wang, H.-Y Zhang, H.-Y Wang, Y.-P. Song, and L.-M. Duan. [n. d.]. Impact of Spectators on a Two-Qubit Gate in a Tunable Coupling Superconducting Circuit. 127, 6 ([n. d.]), 060505. Publisher: American Physical Society.
[4]
José Campos and André Souto. 2021. Qbugs: A collection of reproducible bugs in quantum algorithms and a supporting infrastructure to enable controlled quantum software testing and debugging experiments. In 2021 IEEE/ACM 2nd International Workshop on Quantum Software Engineering (Q-SE). IEEE, 28--32.
[5]
Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. [n. d.]. Stable signal recovery from incomplete and inaccurate measurements. 59, 8 ([n. d.]), 1207--1223. : https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.20124.
[6]
M. Cerezo, Akira Sone, Tyler Volkoff, Lukasz Cincio, and Patrick J. Coles. [n. d.]. Cost function dependent barren plateaus in shallow parametrized quantum circuits. 12, 1 ([n. d.]), 1791.
[7]
Piotr Czarnik, Andrew Arrasmith, Patrick J. Coles, and Lukasz Cincio. [n. d.]. Error mitigation with Clifford quantum-circuit data. 5 ([n. d.]), 592. arXiv:2005.10189
[8]
Poulami Das, Swamit Tannu, Siddharth Dangwal, and Moinuddin Qureshi. 2021. Adapt: Mitigating idling errors in qubits via adaptive dynamical decoupling. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture. 950--962.
[9]
Poulami Das, Swamit S Tannu, Prashant J Nair, and Moinuddin Qureshi. 2019. A case for multi-programming quantum computers. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 291--303.
[10]
Cirq Developers. [n. d.]. Cirq.
[11]
L. DiCarlo, J. M. Chow, J. M. Gambetta, Lev S. Bishop, B. R. Johnson, D. I. Schuster, J. Majer, A. Blais, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf. [n. d.]. Demonstration of two-qubit algorithms with a superconducting quantum processor. 460, 7252 ([n. d.]), 240--244. Number: 7252 Publisher: Nature Publishing Group.
[12]
D.L. Donoho. [n. d.]. Compressed sensing. 52, 4 ([n. d.]), 1289--1306.
[13]
Daniel J Egger, Jakub Mareček, and Stefan Woerner. 2021. Warm-starting quantum optimization. Quantum 5 (2021), 479.
[14]
Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. [n. d.]. A Quantum Approximate Optimization Algorithm. arXiv:1411.4028 [quant-ph]
[15]
Enrico Fontana, Ivan Rungger, Ross Duncan, and Cristina Cîrstoiu. [n. d.]. Efficient recovery of variational quantum algorithms landscapes using classical signal processing. arXiv:2208.05958 [quant-ph] http://arxiv.org/abs/2208.05958
[16]
P. J. Green and Bernard W. Silverman. [n. d.]. Nonparametric Regression and Generalized Linear Models: A roughness penalty approach. Chapman and Hall/CRC.
[17]
Lov K. Grover. [n. d.]. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium on Theory of Computing (New York, NY, USA, 1996-07-01) (STOC '96). Association for Computing Machinery, 212--219.
[18]
Matthew P. Harrigan, Kevin J. Sung, Matthew Neeley, Kevin J. Satzinger, Frank Arute, Kunal Arya, Juan Atalaya, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Daniel Eppens, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Alan Ho, Sabrina Hong, Trent Huang, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Charles Neill, Florian Neukart, Murphy Yuezhen Niu, Thomas E. O'Brien, Bryan O'Gorman, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Marco Szalay, Amit Vainsencher, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Leo Zhou, Hartmut Neven, Dave Bacon, Erik Lucero, Edward Farhi, and Ryan Babbush. [n. d.]. Quantum approximate optimization of non-planar graph problems on a planar superconducting processor. 17, 3 ([n. d.]), 332--336.
[19]
Yipeng Huang and Margaret Martonosi. [n. d.]. Statistical Assertions for Validating Patterns and Finding Bugs in Quantum Programs. In Proceedings of the 46th International Symposium on Computer Architecture (2019-06-22). 541--553. arXiv:1905.09721 [quant-ph]
[20]
Ashish Kakkar, Jeffrey Larson, Alexey Galda, and Ruslan Shaydulin. [n. d.]. Characterizing Error Mitigation by Symmetry Verification in QAOA. ([n. d.]). arXiv:2204.05852 http://arxiv.org/abs/2204.05852
[21]
Abhinav Kandala, Kristan Temme, Antonio D Córcoles, Antonio Mezzacapo, Jerry M Chow, and Jay M Gambetta. 2019. Error mitigation extends the computational reach of a noisy quantum processor. Nature 567, 7749 (2019), 491--495.
[22]
Martin Larocca, Frederic Sauvage, Faris M. Sbahi, Guillaume Verdon, Patrick J. Coles, and M. Cerezo. [n. d.]. Group-Invariant Quantum Machine Learning. ([n. d.]).
[23]
Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. [n. d.]. Projection-based runtime assertions for testing and debugging Quantum programs. 4 ([n. d.]), 1--29. Issue OOPSLA.
[24]
Ying Li and Simon C. Benjamin. [n. d.]. Efficient Variational Quantum Simulator Incorporating Active Error Minimization. 7, 2 ([n. d.]), 021050. Publisher: American Physical Society.
[25]
Zachary C Lipton. 2018. The mythos of model interpretability: In machine learning, the concept of interpretability is both important and slippery. Queue 16, 3 (2018), 31--57.
[26]
Ji Liu, Gregory T. Byrd, and Huiyang Zhou. [n. d.]. Quantum Circuits for Dynamic Runtime Assertions in Quantum Computation. In Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems (Lausanne Switzerland, 2020-03-09). ACM, 1017--1030.
[27]
Chufan Lyu, Xusheng Xu, Man-Hong Yung, and Abolfazl Bayat. [n. d.]. Symmetry enhanced variational quantum eigensolver. arXiv:2203.02444 [quant-ph] http://arxiv.org/abs/2203.02444
[28]
Carlos Ortiz Marrero, Mária Kieferová, and Nathan Wiebe. [n. d.]. Entanglement Induced Barren Plateaus. arXiv:2010.15968 [quant-ph]
[29]
Sam McArdle, Xiao Yuan, and Simon Benjamin. [n. d.]. Error-mitigated digital quantum simulation. 122, 18 ([n. d.]), 180501. arXiv:1807.02467 [quant-ph]
[30]
Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven. [n. d.]. Barren plateaus in quantum neural network training landscapes. 9, 1 ([n. d.]), 4812. Number: 1 Publisher: Nature Publishing Group.
[31]
David C. McKay, Sarah Sheldon, John A. Smolin, Jerry M. Chow, and Jay M. Gambetta. [n. d.]. Three-Qubit Randomized Benchmarking. 122, 20 ([n. d.]), 200502. Publisher: American Physical Society.
[32]
Johannes Jakob Meyer, Marian Mularski, Elies Gil-Fuster, Antonio Anna Mele, Francesco Arzani, Alissa Wilms, and Jens Eisert. [n. d.]. Exploiting symmetry in variational quantum machine learning. ([n. d.]). arXiv:2205.06217 http://arxiv.org/abs/2205.06217
[33]
Prakash Murali, Jonathan M. Baker, Ali Javadi Abhari, Frederic T. Chong, and Margaret Martonosi. [n. d.]. Noise-Adaptive Compiler Mappings for Noisy Intermediate-Scale Quantum Computers. ([n. d.]).
[34]
Quynh T. Nguyen, Louis Schatzki, Paolo Braccia, Michael Ragone, Patrick J. Coles, Frederic Sauvage, Martin Larocca, and M. Cerezo. [n. d.]. Theory for Equivariant Quantum Neural Networks. arXiv:2210.08566 [quant-ph, stat]
[35]
G. Nürnberger and Th. Riessinger. [n. d.]. Bivariate spline interpolation at grid points. 71, 1 ([n. d.]), 91--119.
[36]
Matteo Paltenghi and Michael Pradel. 2022. Bugs in Quantum computing platforms: an empirical study. Proceedings of the ACM on Programming Languages 6, OOPSLA1 (2022), 1--27.
[37]
Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. [n. d.]. On the difficulty of training Recurrent Neural Networks. ([n. d.]).
[38]
Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. [n. d.]. A variational eigenvalue solver on a photonic quantum processor. 5, 1 ([n. d.]), 4213. Number: 1 Publisher: Nature Publishing Group.
[39]
Gokul Subramanian Ravi, Kaitlin N Smith, Pranav Gokhale, and Frederic T Chong. 2021. Quantum Computing in the Cloud: Analyzing job and machine characteristics. In 2021 IEEE International Symposium on Workload Characterization (IISWC). IEEE, 39--50.
[40]
Salonik Resch, Anthony Gutierrez, Joon Suk Huh, Srikant Bharadwaj, Yasuko Eckert, Gabriel Loh, Mark Oskin, and Swamit Tannu. 2021. Accelerating variational quantum algorithms using circuit concurrency. arXiv preprint arXiv:2109.01714 (2021).
[41]
Vincent Russo, Andrea Mari, Nathan Shammah, Ryan LaRose, and William J Zeng. 2022. Testing platform-independent quantum error mitigation on noisy quantum computers. arXiv preprint arXiv:2210.07194 (2022).
[42]
Ilya G. Ryabinkin and Scott N. Genin. [n. d.]. Symmetry adaptation in quantum chemistry calculations on a quantum computer. arXiv:1812.09812 [quant-ph] http://arxiv.org/abs/1812.09812
[43]
Kazuhiro Seki, Tomonori Shirakawa, and Seiji Yunoki. [n. d.]. Symmetry-adapted variational quantum eigensolver. 101, 5 ([n. d.]), 052340. arXiv:1912.13146 [cond-mat, physics:quant-ph]
[44]
Ruslan Shaydulin and Alexey Galda. [n. d.]. Error Mitigation for Deep Quantum Optimization Circuits by Leveraging Problem Symmetries. ([n. d.]).
[45]
Ruslan Shaydulin and Stefan M. Wild. [n. d.]. Exploiting Symmetry Reduces the Cost of Training QAOA. 2 ([n. d.]), 1--9. arXiv:2101.10296
[46]
David Sherrington and Scott Kirkpatrick. [n. d.]. Solvable Model of a Spin-Glass. 35, 26 ([n. d.]), 1792--1796. Publisher: American Physical Society.
[47]
P.W. Shor. [n. d.]. Algorithms for quantum computation: discrete logarithms and factoring. In Proceedings 35th Annual Symposium on Foundations of Computer Science (1994-11). 124--134.
[48]
Samuel Stein, Nathan Wiebe, Yufei Ding, Peng Bo, Karol Kowalski, Nathan Baker, James Ang, and Ang Li. 2022. EQC: ensembled quantum computing for variational quantum algorithms. In Proceedings of the 49th Annual International Symposium on Computer Architecture. 59--71.
[49]
Michael Streif, Martin Leib, Filip Wudarski, Eleanor Rieffel, and Zhihui Wang. [n. d.]. Quantum algorithms with local particle number conservation: noise effects and error correction. 103, 4 ([n. d.]), 042412. arXiv:2011.06873 [quant-ph]
[50]
Krysta M. Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. [n. d.]. Q#: Enabling scalable quantum computing and development with a high-level domain-specific language. In Proceedings of the Real World Domain Specific Languages Workshop 2018 on - RWDSL2018 (2018). 1--10. arXiv:1803.00652 [quant-ph]
[51]
Swamit S. Tannu and Moinuddin Qureshi. [n. d.]. Ensemble of Diverse Mappings: Improving Reliability of Quantum Computers by Orchestrating Dissimilar Mistakes. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture (Columbus OH USA, 2019-10-12). ACM, 253--265.
[52]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Mitigating measurement errors in quantum computers by exploiting state-dependent bias. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture. 279--290.
[53]
Swamit S Tannu and Moinuddin K Qureshi. 2019. Not all qubits are created equal: A case for variability-aware policies for NISQ-era quantum computers. In Proceedings of the Twenty-Fourth International Conference on Architectural Support for Programming Languages and Operating Systems. 987--999.
[54]
Kristan Temme, Sergey Bravyi, and Jay M. Gambetta. [n. d.]. Error Mitigation for Short-Depth Quantum Circuits. 119, 18 ([n. d.]), 180509. Publisher: American Physical Society.
[55]
Lorenza Viola and Seth Lloyd. [n. d.]. Dynamical suppression of decoherence in two-state quantum systems. ([n. d.]).
[56]
Pengzhan Zhao, Jianjun Zhao, Zhongtao Miao, and Shuhan Lan. 2021. Bugs4Q: A benchmark of real bugs for quantum programs. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE, 1373--1376.

Cited By

View all
  • (2024)MorphQPV: Exploiting Isomorphism in Quantum Programs to Facilitate Confident VerificationProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3620666.3651360(671-688)Online publication date: 27-Apr-2024
  • (2024)Distributionally Robust Variational Quantum Algorithms With Shifted NoiseIEEE Transactions on Quantum Engineering10.1109/TQE.2024.34093095(1-12)Online publication date: 2024

Index Terms

  1. Enabling High Performance Debugging for Variational Quantum Algorithms using Compressed Sensing

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Conferences
    ISCA '23: Proceedings of the 50th Annual International Symposium on Computer Architecture
    June 2023
    1225 pages
    ISBN:9798400700958
    DOI:10.1145/3579371
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Sponsors

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 17 June 2023

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. quantum computing
    2. variational quantum algorithms
    3. debugging

    Qualifiers

    • Research-article

    Funding Sources

    Conference

    ISCA '23
    Sponsor:

    Acceptance Rates

    Overall Acceptance Rate 543 of 3,203 submissions, 17%

    Upcoming Conference

    ISCA '25

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)259
    • Downloads (Last 6 weeks)24
    Reflects downloads up to 01 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)MorphQPV: Exploiting Isomorphism in Quantum Programs to Facilitate Confident VerificationProceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 310.1145/3620666.3651360(671-688)Online publication date: 27-Apr-2024
    • (2024)Distributionally Robust Variational Quantum Algorithms With Shifted NoiseIEEE Transactions on Quantum Engineering10.1109/TQE.2024.34093095(1-12)Online publication date: 2024

    View Options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Get Access

    Login options

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media