Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

MERF: Memory-Efficient Radiance Fields for Real-time View Synthesis in Unbounded Scenes

Published: 26 July 2023 Publication History

Abstract

Neural radiance fields enable state-of-the-art photorealistic view synthesis. However, existing radiance field representations are either too compute-intensive for real-time rendering or require too much memory to scale to large scenes. We present a Memory-Efficient Radiance Field (MERF) representation that achieves real-time rendering of large-scale scenes in a browser. MERF reduces the memory consumption of prior sparse volumetric radiance fields using a combination of a sparse feature grid and high-resolution 2D feature planes. To support large-scale unbounded scenes, we introduce a novel contraction function that maps scene coordinates into a bounded volume while still allowing for efficient ray-box intersection. We design a lossless procedure for baking the parameterization used during training into a model that achieves real-time rendering while still preserving the photorealistic view synthesis quality of a volumetric radiance field.

Supplementary Material

MP4 File (papers_623_VOD.mp4)
presentation

References

[1]
D.G. Aliaga, T. Funkhouser, D. Yanovsky, and I. Carlbom. 2002. Sea of images. IEEE Visualization (2002).
[2]
Benjamin Attal, Jia-Bin Huang, Michael Zollhöfer, Johannes Kopf, and Changil Kim. 2022. Learning Neural Light Fields with Ray-Space Embedding Networks. CVPR (2022).
[3]
Benjamin Attal, Selena Ling, Aaron Gokaslan, Christian Richardt, and James Tompkin. 2020. MatryODShka: Real-time 6DoF Video View Synthesis using Multi-Sphere Images. ECCV (2020).
[4]
Jonathan T. Barron, Ben Mildenhall, Dor Verbin, Pratul P. Srinivasan, and Peter Hedman. 2022. Mip-NeRF 360: Unbounded Anti-Aliased Neural Radiance Fields. CVPR (2022).
[5]
Yoshua Bengio, Nicholas Léonard, and Aaron Courville. 2013. Estimating or propagating gradients through stochastic neurons for conditional computation. arXiv:1308.3432 (2013).
[6]
Michael Broxton, John Flynn, Ryan Overbeck, Daniel Erickson, Peter Hedman, Matthew DuVall, Jason Dourgarian, Jay Busch, Matt Whalen, and Paul Debevec. 2020. Immersive Light Field Video with a Layered Mesh Representation. ACM Transactions on Graphics (2020).
[7]
Chris Buehler, Michael Bosse, Leonard McMillan, Steven Gortler, and Michael Cohen. 2001. Unstructured Lumigraph Rendering. SIGGRAPH (2001).
[8]
Junli Cao, Huan Wang, Pavlo Chemerys, Vladislav Shakhrai, Ju Hu, Yun Fu, Denys Makoviichuk, Sergey Tulyakov, and Jian Ren. 2023. Real-Time Neural Light Field on Mobile Devices. CVPR (2023).
[9]
Eric R. Chan, Connor Z. Lin, Matthew A. Chan, Koki Nagano, Boxiao Pan, Shalini De Mello, Orazio Gallo, Leonidas Guibas, Jonathan Tremblay, Sameh Khamis, Tero Karras, and Gordon Wetzstein. 2022. Efficient Geometry-aware 3D Generative Adversarial Networks. CVPR (2022).
[10]
Gaurav Chaurasia, Sylvain Duchene, Olga Sorkine-Hornung, and George Drettakis. 2013. Depth Synthesis and Local Warps for Plausible Image-Based Navigation. ACM Transactions on Graphics (2013).
[11]
Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and Hao Su. 2022. TensoRF: Tensorial Radiance Fields. ECCV (2022).
[12]
Zhiqin Chen, Thomas Funkhouser, Peter Hedman, and Andrea Tagliasacchi. 2023. MobileNeRF: Exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. CVPR (2023).
[13]
Paul Debevec, Yizhou Yu, and George Borshukov. 1998. Efficient view-dependent image-based rendering with projective texture-mapping. EGSR (1998).
[14]
Chenxi Lola Deng and Enzo Tartaglione. 2023. Compressing Explicit Voxel Grid Representations: Fast NeRFs Become Also Small. WACV (2023).
[15]
Terrance DeVries, Miguel Angel Bautista, Nitish Srivastava, Graham W. Taylor, and Joshua M. Susskind. 2021. Unconstrained Scene Generation with Locally Conditioned Radiance Fields. ICCV (2021).
[16]
John Flynn, Michael Broxton, Paul Debevec, Matthew DuVall, Graham Fyffe, Ryan Overbeck, Noah Snavely, and Richard Tucker. 2019. DeepView: View synthesis with learned gradient descent. CVPR (2019).
[17]
Stephan J. Garbin, Marek Kowalski, Matthew Johnson, Jamie Shotton, and Julien Valentin. 2021. FastNeRF: High-Fidelity Neural Rendering at 200FPS. ICCV (2021).
[18]
Steven J. Gortler, Radek Grzeszczuk, Richard Szeliski, and Michael F. Cohen. 1996. The lumigraph. SIGGRAPH (1996).
[19]
Peter Hedman, Julien Philip, True Price, Jan-Michael Frahm, George Drettakis, and Gabriel Brostow. 2018. Deep blending for free-viewpoint image-based rendering. SIGGRAPH Asia (2018).
[20]
Peter Hedman, Pratul P. Srinivasan, Ben Mildenhall, Jonathan T. Barron, and Paul Debevec. 2021. Baking Neural Radiance Fields for Real-Time View Synthesis. ICCV (2021).
[21]
Animesh Karnewar, Tobias Ritschel, Oliver Wang, and Niloy Mitra. 2022. ReLU fields: The little non-linearity that could. SIGGRAPH (2022).
[22]
Petr Kellnhofer, Lars Jebe, Andrew Jones, Ryan Spicer, Kari Pulli, and Gordon Wetzstein. 2021. Neural Lumigraph Rendering. CVPR (2021).
[23]
Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimization. In ICLR.
[24]
Andreas Kurz, Thomas Neff, Zhaoyang Lv, Michael Zollhöfer, and Markus Steinberger. 2022. AdaNeRF: Adaptive Sampling for Real-time Rendering of Neural Radiance Fields. ECCV (2022).
[25]
Marc Levoy and Pat Hanrahan. 1996. Light field rendering. SIGGRAPH (1996).
[26]
Lingzhi Li, Zhen Shen, Zhongshu Wang, Li Shen, and Liefeng Bo. 2022b. Compressing Volumetric Radiance Fields to 1 MB. arXiv:2211.16386 (2022).
[27]
Ruilong Li, Matthew Tancik, and Angjoo Kanazawa. 2022d. NerfAcc: A General NeRF Accleration Toolbox. arXiv:2210.04847 (2022).
[28]
Sicheng Li, Hao Li, Yue Wang, Yiyi Liao, and Lu Yu. 2022a. SteerNeRF: Accelerating NeRF Rendering via Smooth Viewpoint Trajectory. arXiv:2212.08476 (2022).
[29]
Zhong Li, Liangchen Song, Celong Liu, Junsong Yuan, and Yi Xu. 2022c. NeuLF: Efficient Novel View Synthesis with Neural 4D Light Field. EGSR (2022).
[30]
Zhi-Hao Lin, Wei-Chiu Ma, Hao-Yu Hsu, Yu-Chiang Frank Wang, and Shenlong Wang. 2022. NeurMiPs: Neural Mixture of Planar Experts for View Synthesis. CVPR (2022).
[31]
David B. Lindell, Julien N.P. Martel, and Gordon Wetzstein. 2021. AutoInt: Automatic Integration for Fast Neural Rendering. CVPR (2021).
[32]
Lingjie Liu, Jiatao Gu, Kyaw Zaw Lin, Tat-Seng Chua, and Christian Theobalt. 2020. Neural Sparse Voxel Fields. NeurIPS (2020).
[33]
Ricardo Martin-Brualla, Noha Radwan, Mehdi S. M. Sajjadi, Jonathan T. Barron, Alexey Dosovitskiy, and Daniel Duckworth. 2021. NeRF in the Wild: Neural Radiance Fields for Unconstrained Photo Collections. CVPR (2021).
[34]
Nelson Max. 1995. Optical models for direct volume rendering. IEEE Transactions on Visualization and Computer Graphics (1995).
[35]
Ben Mildenhall, Pratul P. Srinivasan, Rodrigo Ortiz-Cayon, Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and Abhishek Kar. 2019. Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines. ACM Transactions on Graphics (2019).
[36]
Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. 2020. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis. ECCV (2020).
[37]
Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. 2022. Instant neural graphics primitives with a multiresolution hash encoding. SIGGRAPH (2022).
[38]
Jacob Munkberg, Wenzheng Chen, Jon Hasselgren, Alex Evans, Tianchang Shen, Thomas Müller, Jun Gao, and Sanja Fidler. 2022a. Extracting Triangular 3D Models, Materials, and Lighting From Images. CVPR (2022).
[39]
Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas Müller, and Sanja Fidler. 2022b. Extracting Triangular 3D Models, Materials, and Lighting From Images. CVPR (2022).
[40]
Thomas Neff, Pascal Stadlbauer, Mathias Parger, Andreas Kurz, Joerg H. Mueller, Chakravarty R. Alla Chaitanya, Anton Kaplanyan, and Markus Steinberger. 2021. DONeRF: Towards Real-Time Rendering of Compact Neural Radiance Fields using Depth Oracle Networks. Computer Graphics Forum (2021).
[41]
Songyou Peng, Michael Niemeyer, Lars Mescheder, Marc Pollefeys, and Andreas Geiger. 2020. Convolutional Occupancy Networks. ECCV (2020).
[42]
Martin Piala and Ronald Clark. 2021. TermiNeRF: Ray Termination Prediction for Efficient Neural Rendering. 3DV (2021).
[43]
Christian Reiser, Songyou Peng, Yiyi Liao, and Andreas Geiger. 2021. KiloNeRF: Speeding up neural radiance fields with thousands of tiny MLPs. ICCV (2021).
[44]
Gernot Riegler and Vladlen Koltun. 2021. Stable view synthesis. CVPR (2021).
[45]
Darius Rückert, Linus Franke, and Marc Stamminger. 2022. ADOP: Approximate differentiable one-pixel point rendering. SIGGRAPH (2022).
[46]
Vincent Sitzmann, Semon Rezchikov, William T. Freeman, Joshua B. Tenenbaum, and Fredo Durand. 2021. Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering. NeurIPS (2021).
[47]
Cheng Sun, Min Sun, and Hwann-Tzong Chen. 2022. Direct voxel grid optimization: Super-fast convergence for radiance fields reconstruction. CVPR (2022).
[48]
Towaki Takikawa, Alex Evans, Jonathan Tremblay, Thomas Müller, Morgan McGuire, Alec Jacobson, and Sanja Fidler. 2022. Variable Bitrate Neural Fields. ACM Transactions on Graphics (2022).
[49]
Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul Srinivasan, Jonathan T. Barron, and Henrik Kretzschmar. 2022. Block-NeRF: Scalable Large Scene Neural View Synthesis. CVPR (2022).
[50]
Ayush Tewari, Justus Thies, Ben Mildenhall, Pratul Srinivasan, Edgar Tretschk, W Yifan, Christoph Lassner, Vincent Sitzmann, Ricardo Martin-Brualla, Stephen Lombardi, et al. 2022. Advances in neural rendering. Computer Graphics Forum (2022).
[51]
Haithem Turki, Deva Ramanan, and Mahadev Satyanarayanan. 2022. Mega-NERF: Scalable Construction of Large-Scale NeRFs for Virtual Fly-Throughs. CVPR (2022).
[52]
Huan Wang, Jian Ren, Zeng Huang, Kyle Olszewski, Menglei Chai, Yun Fu, and Sergey Tulyakov. 2022b. R2L: Distilling Neural Radiance Field to Neural Light Field for Efficient Novel View Synthesis. ECCV (2022).
[53]
Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. 2021. NeuS: Learning Neural Implicit Surfaces by Volume Rendering for Multi-view Reconstruction. NeurIPS (2021).
[54]
Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. 2004. Image quality assessment: from error visibility to structural similarity. IEEE TIP (2004).
[55]
Zhongshu Wang, Lingzhi Li, Zhen Shen, Li Shen, and Liefeng Bo. 2022a. 4K-NeRF: High Fidelity Neural Radiance Fields at Ultra High Resolutions. arXiv:2212.04701 (2022).
[56]
Suttisak Wizadwongsa, Pakkapon Phongthawee, Jiraphon Yenphraphai, and Supasorn Suwajanakorn. 2021. NeX: Real-time View Synthesis with Neural Basis Expansion. CVPR (2021).
[57]
Liwen Wu, Jae Yong Lee, Anand Bhattad, Yuxiong Wang, and David Forsyth. 2022a. DIVeR: Real-time and Accurate Neural Radiance Fields with Deterministic Integration for Volume Rendering. CVPR (2022).
[58]
Xiuchao Wu, Jiamin Xu, Zihan Zhu, Hujun Bao, Qixing Huang, James Tompkin, and Weiwei Xu. 2022b. Scalable Neural Indoor Scene Rendering. ACM TOG (2022).
[59]
Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. 2021. Volume rendering of neural implicit surfaces. NeurIPS (2021).
[60]
Lior Yariv, Peter Hedman, Christian Reiser, Dor Verbin, Pratul P. Srinivasan, Richard Szeliski, Jonathan T. Barron, and Ben Mildenhall. 2023. BakedSDF: Meshing Neural SDFs for Real-Time View Synthesis. SIGGRAPH (2023).
[61]
Penghang Yin, Jiancheng Lyu, Shuai Zhang, Stanley Osher, Yingyong Qi, and Jack Xin. 2019. Understanding straight-through estimator in training activation quantized neural nets. ICLR (2019).
[62]
Alex Yu, Sara Fridovich-Keil, Matthew Tancik, Qinhong Chen, Benjamin Recht, and Angjoo Kanazawa. 2022. Plenoxels: Radiance fields without neural networks. CVPR (2022).
[63]
Alex Yu, Ruilong Li, Matthew Tancik, Hao Li, Ren Ng, and Angjoo Kanazawa. 2021. PlenOctrees for real-time rendering of neural radiance fields. ICCV (2021).
[64]
Jian Zhang, Jinchi Huang, Bowen Cai, Huan Fu, Mingming Gong, Chaohui Wang, Jiaming Wang, Hongchen Luo, Rongfei Jia, Binqiang Zhao, and Xing Tang. 2022. Digging into Radiance Grid for Real-Time View Synthesis with Detail Preservation. ECCV (2022).
[65]
Kai Zhang, Gernot Riegler, Noah Snavely, and Vladlen Koltun. 2020. NeRF++: Analyzing and Improving Neural Radiance Fields. arXiv:2010.07492 (2020).
[66]
Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman, and Oliver Wang. 2018. The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. CVPR (2018).
[67]
Tinghui Zhou, Richard Tucker, John Flynn, Graham Fyffe, and Noah Snavely. 2018. Stereo Magnification: Learning View Synthesis using Multiplane Images. SIGGRAPH (2018).

Cited By

View all
  • (2025)Efficient large-scale scene representation with a hybrid of high-resolution grid and plane featuresPattern Recognition10.1016/j.patcog.2024.111001158(111001)Online publication date: Feb-2025
  • (2024)Research on 3D Visualization of Drone Scenes Based on Neural Radiance FieldsElectronics10.3390/electronics1309168213:9(1682)Online publication date: 26-Apr-2024
  • (2024)uSF: Learning Neural Semantic Field with UncertaintyOptical Memory and Neural Networks10.3103/S1060992X2470017633:3(276-285)Online publication date: 26-Sep-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 42, Issue 4
August 2023
1912 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3609020
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2023
Published in TOG Volume 42, Issue 4

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. neural radiance fields
  2. volumetric representation
  3. image synthesis
  4. real-time rendering
  5. deep learning

Qualifiers

  • Research-article

Funding Sources

  • ERC Starting Grant LEGO3D
  • DFG EXC number

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)638
  • Downloads (Last 6 weeks)30
Reflects downloads up to 01 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2025)Efficient large-scale scene representation with a hybrid of high-resolution grid and plane featuresPattern Recognition10.1016/j.patcog.2024.111001158(111001)Online publication date: Feb-2025
  • (2024)Research on 3D Visualization of Drone Scenes Based on Neural Radiance FieldsElectronics10.3390/electronics1309168213:9(1682)Online publication date: 26-Apr-2024
  • (2024)uSF: Learning Neural Semantic Field with UncertaintyOptical Memory and Neural Networks10.3103/S1060992X2470017633:3(276-285)Online publication date: 26-Sep-2024
  • (2024)Frustum Volume Caching for Accelerated NeRF RenderingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36753707:3(1-22)Online publication date: 9-Aug-2024
  • (2024)4D Gaussian Splatting with Scale-aware Residual Field and Adaptive Optimization for Real-time Rendering of Temporally Complex Dynamic ScenesProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681463(7871-7880)Online publication date: 28-Oct-2024
  • (2024)HPC: Hierarchical Progressive Coding Framework for Volumetric VideoProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3681107(7937-7946)Online publication date: 28-Oct-2024
  • (2024)GOI: Find 3D Gaussians of Interest with an Optimizable Open-vocabulary Semantic-space HyperplaneProceedings of the 32nd ACM International Conference on Multimedia10.1145/3664647.3680852(5328-5337)Online publication date: 28-Oct-2024
  • (2024)A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large DatasetsACM Transactions on Graphics10.1145/365816043:4(1-15)Online publication date: 19-Jul-2024
  • (2024)Binary Opacity Grids: Capturing Fine Geometric Detail for Mesh-Based View SynthesisACM Transactions on Graphics10.1145/365813043:4(1-14)Online publication date: 19-Jul-2024
  • (2024)FaceFolds: Meshed Radiance Manifolds for Efficient Volumetric Rendering of Dynamic FacesProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36513047:1(1-17)Online publication date: 13-May-2024
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media