Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3597066.3597090acmotherconferencesArticle/Chapter ViewAbstractPublication PagesissacConference Proceedingsconference-collections
research-article
Open access

Lazard-style CAD and Equational Constraints

Published: 24 July 2023 Publication History

Abstract

McCallum-style Cylindrical Algebra Decomposition (CAD) is a major improvement on the original Collins version, and has had many subsequent advances, notably for total or partial equational constraints. But it suffers from a problem with nullification. The recently-justified Lazard-style CAD does not have this problem. However, transporting the equational constraints work to Lazard-style does reintroduce nullification issues. This paper explains the problem, and the solutions to it, based on the second author’s Ph.D. thesis and the Brown–McCallum improvement to Lazard.
With a single equational constraint, we can gain the same improvements in Lazard-style as in McCallum-style CAD. Moreover, our approach does not fail where McCallum would due to nullification. Unsurprisingly, it does not achieve the same level of improvement as it does in the non-nullified cases. We also consider the case of multiple equational constraints.

References

[1]
R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and D.J. Wilson. 2013. Cylindrical Algebraic Decompositions for Boolean Combinations. In Proceedings ISSAC 2013. 125–132. https://doi.org/10.1145/2465506.2465516
[2]
R.J. Bradford, J.H. Davenport, M. England, S. McCallum, and D.J. Wilson. 2016. Truth table invariant cylindrical algebraic decomposition. J. Symbolic Comp. 76 (2016), 1–35. https://doi.org/10.1016/j.jsc.2015.11.002
[3]
C.W. Brown. 2001. Improved Projection for Cylindrical Algebraic Decomposition. J. Symbolic Comp. 32 (2001), 447–465. https://doi.org/10.1006/jsco.2001.0463
[4]
C.W. Brown and S. McCallum. 2020. Enhancements to Lazard’s Method for Cylindrical Algebraic Decomposition. In Computer Algebra in Scientific Computing CASC 2020(Springer Lecture Notes in Computer Science, Vol. 12291), F. Boulier, M. England, T.M. Sadykov, and E.V. Vorozhtsov (Eds.). 129–149. https://doi.org/10.1007/978-3-030-60026-6_8
[5]
C. Chen, M. Moreno Maza, B. Xia, and L. Yang. 2009. Computing Cylindrical Algebraic Decomposition via Triangular Decomposition. In Proceedings ISSAC 2009, J. May (Ed.). 95–102. https://doi.org/10.1145/1576702.1576718
[6]
G.E. Collins. 1975. Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic Decomposition. In Proceedings 2nd. GI Conference Automata Theory & Formal Languages(Springer Lecture Notes in Computer Science, Vol. 33). 134–183. https://doi.org/10.1007/3-540-07407-4_17
[7]
G.E. Collins. 1998. Quantifier elimination by cylindrical algebraic decomposition — twenty years of progress. In Quantifier Elimination and Cylindrical Algebraic Decomposition, B.F. Caviness and J.R. Johnson (Eds.). Springer Verlag, Wien, 8–23. https://doi.org/10.1007/978-3-7091-9459-1_2
[8]
J.H. Davenport and M. England. 2016. Need Polynomial Systems be Doubly-exponential?. In International Congress on Mathematical Software ICMS 2016(Springer Lecture Notes in Computer Science, Vol. 9725), G-M. Greuel, T. Koch, P. Paule, and A. Sommese (Eds.). 157–164. https://doi.org/10.1007/978-3-319-42432-3_20
[9]
J.H. Davenport and M. England. 2017. The Potential and Challenges of CAD with Equational Constraints for SC-Square. In Proceedings MACIS 2017: Mathematical Aspects of Computer and Information Sciences. 280–285. https://doi.org/10.1007/978-3-319-72453-9_22
[10]
J.H. Davenport, Z.P. Tonks, and A.K. Uncu. 2023. A Poly-algorithmic Approach to Quantifier Elimination. https://arxiv.org/abs/2302.06814.
[11]
A. Dolzmann, A. Seidl, and Th. Sturm. 2004. Efficient Projection Orders for CAD. In Proceedings ISSAC 2004, J. Gutierrez (Ed.). 111–118. https://doi.org/10.1145/1005285.1005303
[12]
M. England, R.J. Bradford, and J.H. Davenport. 2020. Cylindrical Algebraic Decomposition with Equational Constraints. In Symbolic Computation and Satisfiability Checking: special issue of Journal of Symbolic Computation, J.H. Davenport, M. England, A. Griggio, T. Sturm, and C. Tinelli (Eds.). Vol. 100. 38–71. https://doi.org/10.1016/j.jsc.2019.07.019
[13]
D. Lazard. 1994. An Improved Projection Operator for Cylindrical Algebraic Decomposition. In Proceedings Algebraic Geometry and its Applications: Collections of Papers from Shreeram S. Abhyankar’s 60th Birthday Conference, C.L. Bajaj (Ed.). 467–476. https://doi.org/10.1007/978-1-4612-2628-4_29
[14]
S. McCallum. 1985. An Improved Projection Operation for Cylindrical Algebraic Decomposition. Technical Report 578. Computer Science University Wisconsin at Madison. https://minds.wisconsin.edu/bitstream/handle/1793/58594/TR578.pdf?sequence=1
[15]
S. McCallum. 1998. An Improved Projection Operation for Cylindrical Algebraic Decomposition. In Quantifier Elimination and Cylindrical Algebraic Decomposition, B.F. Caviness and J.R. Johnson (Eds.). Springer-Verlag, Wien, 242–268. https://doi.org/10.1007/978-3-7091-9459-1_12
[16]
S. McCallum. 1999. On Projection in CAD-Based Quantifier Elimination with Equational Constraints. In Proceedings ISSAC ’99, S. Dooley (Ed.). 145–149. https://doi.org/10.1145/309831.309892
[17]
S. McCallum. 2001. On Propagation of Equational Constraints in CAD-Based Quantifier Elimination. In Proceedings ISSAC 2001, B. Mourrain (Ed.). 223–230. https://doi.org/10.1145/384101.384132
[18]
S. McCallum, A. Parusiński, and L. Paunescu. 2019. Validity proof of Lazard’s method for CAD construction. J. Symbolic Comp. 92 (2019), 52–69. https://doi.org/10.1016/j.jsc.2017.12.002
[19]
A.S. Nair. 2021. Curtains in Cylindrical Algebraic Decomposition. Ph. D. Dissertation. University of Bath. https://researchportal.bath.ac.uk/en/studentTheses/curtains-in-cylindrical-algebraic-decomposition
[20]
A.S. Nair, J.H. Davenport, and G.K. Sankaran. 2020. Curtains in CAD: Why Are They a Problem and How Do We Fix Them? In Mathematical Software — ICMS 2020, (Springer Lecture Notes in Computer Science, Vol. 12097)A.M. Bigatti, J. Carette, J.H. Davenport, M. Joswig, and T. de Wolff (Eds.). 17–26. https://doi.org/10.1007/978-3-030-52200-1_2
[21]
A. Nair, J. Davenport, G. Sankaran, and S. McCallum. 2019. Lazard’s CAD exploiting equality constraints. ACM Comm. Computer Algebra 53 (2019), 138–141. https://doi.org/10.1145/3377006.3377020
[22]
Z. Tonks. 2021. Poly-algorithmic Techniques in Real Quantifier Elimination. Ph. D. Dissertation. University of Bath. https://researchportal.bath.ac.uk/en/studentTheses/poly-algorithmic-techniques-in-real-quantifier-elimination
[23]
D.J. Wilson, R.J. Bradford, and J.H. Davenport. 2012. Speeding up Cylindrical Algebraic Decomposition by Gröbner Bases. In Proceedings CICM 2012, J. Jeuring et al. (Ed.). 280–294. https://doi.org/10.1007/978-3-642-31374-5_19

Cited By

View all
  • (2024)On Minimal and Minimum Cylindrical Algebraic DecompositionsProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669704(316-323)Online publication date: 16-Jul-2024
  • (2023)A Poly-algorithmic Approach to Quantifier Elimination2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)10.1109/SYNASC61333.2023.00013(44-51)Online publication date: 11-Sep-2023

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Other conferences
ISSAC '23: Proceedings of the 2023 International Symposium on Symbolic and Algebraic Computation
July 2023
567 pages
ISBN:9798400700392
DOI:10.1145/3597066
This work is licensed under a Creative Commons Attribution-NoDerivatives International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 24 July 2023

Check for updates

Author Tags

  1. Cylindrical algebraic decomposition
  2. Equational constraints
  3. Lazard projection and lifting

Qualifiers

  • Research-article
  • Research
  • Refereed limited

Funding Sources

  • EPSRC
  • FWF

Conference

ISSAC 2023

Acceptance Rates

Overall Acceptance Rate 395 of 838 submissions, 47%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)146
  • Downloads (Last 6 weeks)23
Reflects downloads up to 20 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)On Minimal and Minimum Cylindrical Algebraic DecompositionsProceedings of the 2024 International Symposium on Symbolic and Algebraic Computation10.1145/3666000.3669704(316-323)Online publication date: 16-Jul-2024
  • (2023)A Poly-algorithmic Approach to Quantifier Elimination2023 25th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC)10.1109/SYNASC61333.2023.00013(44-51)Online publication date: 11-Sep-2023

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

HTML Format

View this article in HTML Format.

HTML Format

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media