Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Predicting Symptom Improvement During Depression Treatment Using Sleep Sensory Data

Published: 27 September 2023 Publication History

Abstract

Depression is a serious mental illness. The current best guideline in depression treatment is closely monitoring patients and adjusting treatment as needed. Close monitoring of patients through physician-administered follow-ups or self-administered questionnaires, however, is difficult in clinical settings due to high cost, lack of trained professionals, and burden to the patients. Sensory data collected from mobile devices has been shown to provide a promising direction for long-term monitoring of depression symptoms. Most existing studies in this direction, however, focus on depression detection; the few studies that are on predicting changes in depression are not in clinical settings. In this paper, we investigate using one type of sensory data, sleep data, collected from wearables to predict improvement of depression symptoms over time after a patient initiates a new pharmacological treatment. We apply sleep trend filtering to noisy sleep sensory data to extract high-level sleep characteristics and develop a family of machine learning models that use simple sleep features (mean and variation of sleep duration) to predict symptom improvement. Our results show that using such simple sleep features can already lead to validation F1 score up to 0.68, indicating that using sensory data for predicting depression improvement during treatment is a promising direction.

References

[1]
World Health Organization (WHO). http://www.who.int/en/.
[2]
Health at a Glance 2011: OECD Indicators. OECD, 2011. Organization for Economic Cooperation and Development OECD.
[3]
P. Alvaro, R. Roberts, and J. Harris. A systematic review assessing bidirectionality between sleep disturbances, anxiety, and depression. Sleep, 36(7), 2013.
[4]
N. B. Becker, S. N. Jesus, K. A. D. R. Joāo, J. N. Viseu, and R. I. S. Martins. Depression and sleep quality in older adults: a meta-analysis. Psychology, Health & Medicine, 22(8), 2017.
[5]
D. Ben-Zeev, E. A. Scherer, R. Wang, H. Xie, and A. T. Campbell. Next-generation psychiatric assessment: Using smartphone sensors to monitor behavior and mental health. Psychiatric Rehabilitation Journal, 38(3):218--226, 2015.
[6]
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational learning theory, pages 144--152, 1992.
[7]
L. Breiman. Random forests. Machine learning, 45(1):5--32, 2001.
[8]
L. Canzian and M. Musolesi. Trajectories of depression: Unobtrusive monitoring of depressive states by means of smartphone mobility traces analysis. In Proc. of ACM UbiComp, pages 1293--1304, 2015.
[9]
C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology, 2:27:1--27:27, 2011. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.
[10]
A. Chekroud, J. Bondar, J. Delgadillo, and et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry, 20, 2021.
[11]
T. Chen and C. Guestrin. XGBoost: a scalable tree boosting system. In Proceedings of ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 785--794, 2016.
[12]
Z. Chen, M. Lin, F. Chen, N. D. Lane, G. Cardone, R. Wang, T. Li, Y. Chen, T. Choudhury, and A. T. Campbell. Unobtrusive sleep monitoring using smartphones. In Proceedings of the 7th International Conference on Pervasive Computing Technologies for Healthcare, pages 145--152. ICST (Institute for Computer Sciences, Social-Informatics and ..., 2013.
[13]
P. Chikersal, A. Doryab, M. Tumminia, D. K. Villalba, J. M. Dutcher, X. Liu, S. Cohen, K. G. Creswell, J. Mankoff, J. D. Creswell, M. Goel, and A. K. Dey. Detecting depression and predicting its onset using longitudinal symptoms captured by passive sensing: A machine learning approach with robust feature selection. ACM Transactions on Computer-Human Interaction, 28(1), February 2021.
[14]
G. Cho, J. Yim, Y. Choi, J. Ko, and S.-H. Lee. Review of machine learning algorithms for diagnosing mental illness. Psychiatry investigation, 16(4):262, 2019.
[15]
I. P. Chow, K. Fua, Y. Huang, W. Bonelli, H. Xiong, E. L. Barnes, and A. B. Teachman. Using mobile sensing to test clinical models of depression, social anxiety, state affect, and social isolation among college students. J Med Internet Res, 19(3), Mar 2017.
[16]
Z. D. Cohen and R. J. DeRubeis. Treatment selection in depression. Annu. Rev. Clin. Psychol, 14(15), 2018.
[17]
C. Cortes and V. Vapnik. Support-vector networks. Machine learning, 20(3):273--297, 1995.
[18]
R. Dai, R. Kannampallil, J. Zhang, N. Lv, J. Ma, and C. Lu. Multi-task learning for randomized controlled trials: A case study on predicting depression with wearable data. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies (IMWUT), 6(2), 2022.
[19]
A. V. de Water, A. Holmes, and D. Hurley. Objective measurements of sleep for non-laboratory settings as alternatives to polysomnography - a systematic review. J Sleep Res., 20, March 2011.
[20]
M. de Zambotti, A. Goldstone, S. Claudatos, I. M. Colrain, and F. C. Baker. A validation study of Fitbit charge 2™ compared with polysomnography in adults. Chronobiol Int., 35(4), 2018.
[21]
O. Demasi, A. Aguilera, and B. Recht. Detecting change in depressive symptoms from daily wellbeing questions, personality, and activity. In IEEE Wireless Health, 2016.
[22]
H. Fang, S. Tu, J. Sheng, and A. Shao. Depression in sleep disturbance: A review on a bidirectional relationship, mechanisms and treatment. J Cell Mol Med, 23(4), April 2019.
[23]
A. A. Farhan, J. Lu, J. Bi, A. Russell, B. Wang, and A. Bamis. Multi-view bi-clustering to identify smartphone sensing features indicative of depression. In Proc. IEEE CHASE, June 2016.
[24]
A. A. Farhan, C. Yue, R. Morillo, S. Ware, J. Lu, J. Bi, J. Kamath, A. Russell, A. Bamis, and B. Wang. Behavior vs. introspection: Refining prediction of clinical depression via smartphone sensing data. In Proc. of Wireless Health, 2016.
[25]
E. Fino and M. Mazzetti. Monitoring healthy and disturbed sleep through smartphone applications: a review of experimental evidence. Sleep and Breathing, 23, 2019.
[26]
J. C. Fortney, J. Unutzer, G. Wrenn, J. M. Pyne, G. R. Smith, M. Schoenbaum, and H. T. Harbin. A tipping point for measurement-based care. Psychiatric Services, 68(2), February 2017.
[27]
M. Frost, A. Doryab, M. Faurholt-Jepsen, L. V. Kessing, and J. E. Bardram. Supporting disease insight through data analysis: refinements of the monarca self-assessment system. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing, pages 133--142. ACM, 2013.
[28]
A. Gruenerbl, V. Osmani, G. Bahle, J. C. Carrasco, S. Oehler, O. Mayora, C. Haring, and P. Lukowicz. Using smart phone mobility traces for the diagnosis of depressive and manic episodes in bipolar patients. In Proceedings of the 5th Augmented Human International Conference, page 38. ACM, 2014.
[29]
A. Grünerbl, P. Oleksy, G. Bahle, C. Haring, J. Weppner, and P. Lukowicz. Towards smart phone based monitoring of bipolar disorder. In Proceedings of the Second ACM Workshop on Mobile Systems, Applications, and Services for HealthCare, page 3. ACM, 2012.
[30]
W. Gu, Z. Yang, L. Shangguan, W. Sun, K. Jin, and Y. Liu. Intelligent sleep stage mining service with smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 649--660. ACM, 2014.
[31]
W. Guy, editor. ECDEU Assessment Manual for Psychopharmacology. Rockville, MD: US Department of Heath, Education, and Welfare Public Health Service Alcohol, Drug Abuse, and Mental Health Administration, 1976.
[32]
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389--422, 2002.
[33]
S. Haghayegh, S. Khoshnevis, M. H. Smolensky, K. R. Diller, and R. J. Castriotta. Accuracy of wristband Fitbit models in assessing sleep: Systematic review and meta-analysis. Journal of medical Internet research, 21(11):e16273, 2019.
[34]
T. Hao, G. Xing, and G. Zhou. iSleep: unobtrusive sleep quality monitoring using smartphones. In Proceedings of the 11th ACM Conference on Embedded Networked Sensor Systems, page 4. ACM, 2013.
[35]
P. Hutka, M. Krivosova, Z. Muchova, I. Tonhajzerova, A. Hamrakova, Z. Mlyncekova, J. Mokry, and I. Ondrejka. Association of sleep architecture and physiology with depressive disorder and antidepressants treatment. International Journal of Molecular Sciences, January 2021.
[36]
A. Kemp, E. Gordon, A. Rush, and L. Williams. Improving the prediction of treatment response in depression: Integration of clinical, cognitive, psychophysiological, neuroimaging, and genetic measures. CNS Spectr., 13(12), 2008.
[37]
S.-J. Kim, K. Koh, S. Boyd, and D. Gorinevsky. ℓ1 trend filtering. SIAM Review, 51(2):339----360, 2009.
[38]
K. Kroenke, R. L. Spitzer, and J. B. Williams. The PHQ-9. Journal of General Internal Medicine, 16(9):606--613, 2001.
[39]
Y. Lee, R. Ragguett, R. Mansur, and et al. Applications of machine learning algorithms to predict therapeutic outcomes in depression: a meta-analysis and systematic review. J Affect Disord, 2018.
[40]
Z. Liang and M. A. C. Martell. Validity of consumer activity wristbands and wearable EEG for measuring overall sleep parameters and sleep structure in free-living conditions. J Healthc Inform Res., 2(1-2), 2018.
[41]
J. Lu, C. Shang, C. Yue, R. Morillo, S. Ware, J. Kamath, A. Bamis, A. Russell, B. Wang, and J. Bi. Joint modeling of heterogeneous sensing data for depression assessment via multi-task learning. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1):1--21, 2018.
[42]
A. Mehrotra, R. Hendley, and M. Musolesi. Towards multi-modal anticipatory monitoring of depressive states through the analysis of human-smartphone interaction. In Proc. of UbiComp, 2016.
[43]
W. Mendelson, editor. Human Sleep and Its Disorders. Berlin: Springer Science & Business Media, 2012.
[44]
J. Meyerhoff, T. Liu, K. P. Kording, L. H. Ungar, S. M. Kaiser, C. J. Karr, D. C. Mohr, et al. Evaluation of changes in depression, anxiety, and social anxiety using smartphone sensor features: longitudinal cohort study. Journal of medical Internet research, 23(9):e22844, 2021.
[45]
J.-M. Min, A. Doryab, J. Wiese, S. Amini, J. Zimmerman, and J. Hong. Toss 'n' turn: smartphone as sleep and sleep quality detector. In SIGCHI Conference on Human Factors in Computing Systems (CHI), 2014.
[46]
H. Miwa, S. Sasahara, and T. Matsui. Roll-over detection and sleep quality measurement using a wearable sensor. In Annu Int Conf IEEE Eng Med Biol Soc., 2007.
[47]
D. C. Mohr, M. Zhang, and S. M. Schueller. Personal sensing: understanding mental health using ubiquitous sensors and machine learning. Annu Rev Clin Psychol, 2017.
[48]
D. W. Morris, M. Toups, and M. H. Trivedi. Measurement-based care in the treatment of clinical depression. FOCUS: The Journal of Lifelong Learning in Psychiatry, 2012.
[49]
T. Mullick, A. Radovic, S. Shaaban, and A. Doryab. Predicting depression in adolescents using mobile and wearable sensors: Multimodal machine learning--based exploratory study. JMIR Formative Research, 2022.
[50]
D. Nutt, J. Davidson, A. Gelenberg, T. Higuchi, S. Kanba, O. Karamustafalioglu, G. Papakostas, K. Sakamoto, T. Terao, and M. Zhang. International consensus statement on major depressive disorder. J Clin Psychiatry, 71(suppl E1):e08, 2010.
[51]
A. A. Ong and M. B. Gillespie. Overview of smartphone applications for sleep analysis. World journal of otorhinolaryngology-head and neck surgery, (2), 2016.
[52]
L. Palagini, C. Baglioni, A. Ciapparelli, A. Gemignani, and D. Riemann. REM sleep dysregulation in depression: state of the art. Sleep Med Rev., 17(5), Oct 2013.
[53]
N. Palmius, A. Tsanas, K. E. A. Saunders, A. C. Bilderbeck, J. R. Geddes, G. M. Goodwin, and M. D. Vos. Detecting bipolar depression from geographic location data. IEEE Transactions on Biomedical Engineering, 64(8):1761--1771, 2017.
[54]
A. Rakotomamonjy. Variable selection using svm-based criteria. Journal of machine learning research, 3(Mar):1357--1370, 2003.
[55]
N. Rost, E. B. Binder, and T. M. Brückl. Predicting treatment outcome in depression: an introduction into current concepts and challenges. European Archives of Psychiatry and Clinical Neuroscience, 2022.
[56]
A. J. Rush, M. H. Trivedi, H. M. Ibrahim, T. J. Carmody, B. Arnow, D. N. Klein, J. C. Markowitz, P. T. Ninan, S. Kornstein, R. Manber, et al. The 16-item quick inventory of depressive symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): a psychometric evaluation in patients with chronic major depression. Biological psychiatry, 54(5):573--583, 2003.
[57]
S. Saeb, M. Zhang, C. J. Karr, S. M. Schueller, M. E. Corden, K. P. Kording, and D. C. Mohr. Mobile phone sensor correlates of depressive symptom severity in daily-life behavior: An exploratory study. Journal of Medical Internet Research, 17(7), 2015.
[58]
S. Seabold and J. Perktold. statsmodels: Econometric and statistical modeling with python. In 9th Python in Science Conference, 2010.
[59]
H. Shama, N. Gabinet, O. Tzischinsky, and B. Portnov. Monitoring sleep in real-world conditions using low-cost technology tools. Biological Rhythm Research, 54(2), 2022.
[60]
G. E. Simon and R. H. Perlis. Personalized medicine for depression: Can we match patients with treatments. Am J Psychiatry, 167(12), December 2010.
[61]
B. Sivertsen, S. Krokstad, S. Overland, and A. Mykletun. The epidemiology of insomnia: associations with physical and mental health. the hunt-2 study. J. Psychosom, 67, 2009.
[62]
Y. Suhara, Y. Xu, and A. Pentland. Deepmood: Forecasting depressed mood based on self-reported histories via recurrent neural networks. Proc. of WWW, 2017.
[63]
D. Taylor, K. Lichstein, H. Durrence, B. Reidel, and A. Bush. Epidemiology of insomnia, depression, and anxiety. Sleep, 28, 2005.
[64]
W. Troxel, D. Kupfer, C. Reynolds, E. Frank, M. Thase, J. Miewald, and D. Buysse. Insomnia and objectively measured sleep disturbances predict treatment outcome in depressed patients treated with psychotherapy or psychotherapy-pharmacotherapy combinations. J Clin Psychiatry, 73(4), April 2012.
[65]
R. Wang, M. S. H. Aung, S. Abdullah, R. Brian, A. T. Campbell, T. Choudhuryy, M. Hauserz, J. Kanez, M. Merrilly, E. A. Scherer, V. W. S. Tsengy, and D. Ben-Zeev. Crosscheck: Toward passive sensing and detection of mental health changes in people with schizophrenia. In Proc. of UbiComp, 2016.
[66]
R. Wang, F. Chen, Z. Chen, T. Li, G. Harari, S. Tignor, X. Zhou, D. Ben-Zeev, and A. T. Campbell. Studentlife: assessing mental health, academic performance and behavioral trends of college students using smartphones. In Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pages 3--14. ACM, 2014.
[67]
R. Wang, W. Wang, A. daSilva, J. F. Huckins, W. M. Kelley, T. F. Heatherton, and A. T. Campbell. Tracking depression dynamics in college students using mobile phone and wearable sensing. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 2(1), 2018.
[68]
K. Yan and D. Zhang. Feature selection and analysis on correlated gas sensor data with recursive feature elimination. Sensors and Actuators B: Chemical, 212:353--363, 2015.
[69]
C. Yue, S. Ware, R. Morillo, J. Lu, C. Shang, J. Bi, A. Russell, A. Bamis, and B. Wang. Fusing location data for depression prediction. IEEE Transactions on Big Data, 2018.
[70]
Y. Zhang, A. A. Folarin, S. Sun, N. Cummins, R. Bendayan, Y. Ranjan, Z. Rashid, P. Conde, C. Stewart, P. Laiou, F. Matcham, K. M. White, F. Lamers, S. Siddi, S. Simblett, I. Myin-Germeys, A. Rintala, T. Wykes, J. M. Haro, B. W. Penninx, V. A. Narayan, M. Hotopf, and R. J. Dobson. Relationship between major depression symptom severity and sleep collected using a wristband wearable device: Multicenter longitudinal observational study. JMIR Mhealth Uhealth, 9(4), Apr 2021.
[71]
Y. Zhang, Z. Yang, and K. Lan. Sleep stage classification using bidirectional LSTM in wearable multi-sensor systems. In IEEE INFOCOM workshop, 2019.
[72]
D. Zhou, J. Luo, V. M. B. Silenzio, Y. Zhou, J. Hu, G. Currier, and H. A. Kautz. Tackling mental health by integrating unobtrusive multimodal sensing. In Proc. of AAAI, 2015.
[73]
B. Zou, X. Zhang, L. Xiao, R. Bai, X. Li, H. Liang, H. Ma, and G. Wang. Sequence modeling of passive sensing data for treatment response prediction in major depressive disorder. IEEE Transactions on Neural Sciences and Rehabilitation Engineering, 31, 2023.
[74]
A. F. Zuur, E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith. Mixed Effects Models and Extensions in Ecology with R. Springer, 2009.

Cited By

View all
  • (2024)Using Mobile Daily Mood and Anxiety Self-ratings to Predict Depression Symptom Improvement2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)10.1109/CHASE60773.2024.00012(13-24)Online publication date: 19-Jun-2024

Index Terms

  1. Predicting Symptom Improvement During Depression Treatment Using Sleep Sensory Data

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
    Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies  Volume 7, Issue 3
    September 2023
    1734 pages
    EISSN:2474-9567
    DOI:10.1145/3626192
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 27 September 2023
    Published in IMWUT Volume 7, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Depression
    2. Machine Learning
    3. Mental Health
    4. Sensory Data
    5. Wearables

    Qualifiers

    • Research-article
    • Research
    • Refereed

    Funding Sources

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)234
    • Downloads (Last 6 weeks)13
    Reflects downloads up to 26 Sep 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Using Mobile Daily Mood and Anxiety Self-ratings to Predict Depression Symptom Improvement2024 IEEE/ACM Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE)10.1109/CHASE60773.2024.00012(13-24)Online publication date: 19-Jun-2024

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media