Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3616392.3623410acmconferencesArticle/Chapter ViewAbstractPublication PagesmswimConference Proceedingsconference-collections
research-article
Open access

Correlation Analysis for the Prediction of QoS in V2V Networks

Published: 30 October 2023 Publication History

Abstract

Vehicle-to-Vehicle (V2V) communication is an essential component of the Intelligent Transportation System (ITS), which enables realtime traffic data sharing and collective awareness among vehicles and promotes a safer, more effective, and environmentally friendly road traffic environment. One of the main prerequisites for a robust and reliable V2V application minimizing crashes, easing traffic, and reducing traffic congestion is an error-free prediction of the underlying communication performance. In this paper, we delve into the predictive Quality of Service (pQoS) for V2V communication specifically for IEEE 802.11p networks. We establish the correlations between main Key Performance Indicators (KPIs) affecting the V2V communication quality as well as provide recommendations on how these correlations can be used to develop a robust Quality of Service (QoS) prediction algorithm for forecasting and optimizing the V2V performance.

References

[1]
5GAA. 2019. Making 5G Proactive and Predictive for the Automotive Industry. White Paper (2019).
[2]
Alessandro Bazzi, Barbara M. Masini, Alberto Zanella, and Ilaria Thibault. 2017. On the Performance of IEEE 802.11p and LTE-V2V for the Cooperative Awareness of Connected Vehicles. IEEE Transactions on Vehicular Technology, Vol. 66, 11 (2017), 10419--10432. https://doi.org/10.1109/TVT.2017.2750803
[3]
Juan Carlos Burguillo-Rial, Enrique Costa-Montenegro, Felipe Gil-Castineira, and Pedro Rodriguez-Hernandez. 2008. Performance Analysis of IEEE 802.11p in urban Environments using a Multi-agent Model. In 2008 IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications. 1--6. https://doi.org/10.1109/PIMRC.2008.4699924
[4]
Che-Yu Chang, Hsu-Chun Yen, and Der-Jiunn Deng. 2016. V2V QoS Guaranteed Channel Access in IEEE 802.11p VANETs. IEEE Transactions on Dependable and Secure Computing, Vol. 13, 1 (2016), 5--17. https://doi.org/10.1109/TDSC.2015.2399912
[5]
Stephan Eichler. 2007. Performance Evaluation of the IEEE 802.11p WAVE Communication Standard. In 2007 IEEE 66th Vehicular Technology Conference. 2199--2203. https://doi.org/10.1109/VETECF.2007.461
[6]
Osama Elgarhy, Onur Yener, and Muhammad Mahtab Alam. 2022. Performance Evaluation of 5G NR Sidelink for V2X Scenarios. In 2022 18th Biennial Baltic Electronics Conference (BEC). 1--5. https://doi.org/10.1109/BEC56180.2022.9935591
[7]
Sebastian Gr"afling, Petri M"ahönen, and Janne Riihij"arvi. 2010. Performance Evaluation of IEEE 1609 WAVE and IEEE 802.11p for Vehicular Communications. In 2010 Second International Conference on Ubiquitous and Future Networks (ICUFN). 344--348. https://doi.org/10.1109/ICUFN.2010.5547184
[8]
Hendrik-Jörn Günther, Björn Mennenga, Oliver Trauer, Raphael Riebl, and Lars Wolf. 2016. Realizing Collective Perception in a Vehicle. In 2016 IEEE Vehicular Networking Conference (VNC). 1--8. https://doi.org/10.1109/VNC.2016.7835930
[9]
Miguel A. Gutierrez-Estevez, Zoran Utkovski, Apostolos Kousaridas, and Chan Zhou. 2021. A Statistical Learning Framework for QoS Prediction in V2X. In 2021 IEEE 4th 5G World Forum (5GWF). 441--446. https://doi.org/10.1109/5GWF52925.2021.00084
[10]
Merima Kulin, Tarik Kazaz, Ingrid Moerman, and Eli De Poorter. 2020. A Survey on Machine Learning-based Performance Improvement of Wireless Networks: PHY, MAC and network layer. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring).
[11]
Baozhu Li, Gordon J. Sutton, Bo Hu, Ren Ping Liu, and Shanzhi Chen. 2017. Modeling and QoS Analysis of the IEEE 802.11p Broadcast Scheme in Vehicular Ad Hoc Networks. Journal of Communications and Networks, Vol. 19, 2 (2017), 169--179. https://doi.org/10.1109/JCN.2017.000026
[12]
Pablo Alvarez Lopez, Michael Behrisch, Laura Bieker-Walz, Jakob Erdmann, Yun-Pang Flötteröd, Robert Hilbrich, Leonhard Lücken, Johannes Rummel, Peter Wagner, and Evamarie Wiessner. 2018. Microscopic Traffic Simulation using SUMO. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC). 2575--2582. https://doi.org/10.1109/ITSC.2018.8569938
[13]
Vasilis Maglogiannis, Dries Naudts, Seilendria Hadiwardoyo, Daniel van den Akker, Johann Marquez-Barja, and Ingrid Moerman. 2022. Experimental V2X Evaluation for C-V2X and ITS-G5 Technologies in a Real-Life Highway Environment. IEEE Transactions on Network and Service Management, Vol. 19, 2 (2022), 1521--1538. https://doi.org/10.1109/TNSM.2021.3129348
[14]
Valerian Mannoni, Vincent Berg, Stefania Sesia, and Eric Perraud. 2019. A Comparison of the V2X Communication Systems: ITS-G5 and C-V2X. In 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring). 1--5. https://doi.org/10.1109/VTCSpring.2019.8746562
[15]
Darlan C. Moreira, Igor M. Guerreiro, Wanlu Sun, Charles C. Cavalcante, and Diego A. Sousa. 2020. QoS Predictability in V2X Communication with Machine Learning. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). 1--5. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129490
[16]
Ramanathan R Rajeswar Reddy G. 2018. An Empirical study on MAC layer in IEEE 802.11p/WAVE based Vehicular Ad hoc Networks. Procedia Computer Science, Vol. 143 (2018), 720--727. https://doi.org/10.1016/j.procs.2018.10.443 8th International Conference on Advances in Computing & Communications (ICACC-2018).
[17]
R. Santhiya and C. GeethaPriya. 2021. Machine Learning Techniques for Intelligent Transportation Systems-An overview. In 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT). 1--7. https://doi.org/10.1109/ICCCNT51525.2021.9579970
[18]
Henrik Schumacher and Hugues Tchouankem. 2013. Highway Propagation Modeling in VANETS and its Impact on Performance Evaluation. In 2013 10th Annual Conference on Wireless On-demand Network Systems and Services (WONS). 178--185. https://doi.org/10.1109/WONS.2013.6578344
[19]
Christoph Sommer, Reinhard German, and Falko Dressler. 2011. Bidirectionally Coupled Network and Road Traffic Simulation for Improved IVC Analysis. IEEE Transactions on Mobile Computing, Vol. 10, 1 (2011), 3--15. https://doi.org/10.1109/TMC.2010.133
[20]
Kang Tan, Duncan Bremner, Julien Le Kernec, Lei Zhang, and Muhammad Imran. 2022. Machine Learning in Vehicular Networking: An Overview. Digital Communications and Networks, Vol. 8, 1 (2022), 18--24. https://doi.org/10.1016/j.dcan.2021.10.007
[21]
Luis Torres-Figueroa, Henning F. Schepker, and Josef Jiru. 2020. QoS Evaluation and Prediction for C-V2X Communication in Commercially-Deployed LTE and Mobile Edge Networks. In 2020 IEEE 91st Vehicular Technology Conference (VTC2020-Spring). 1--7. https://doi.org/10.1109/VTC2020-Spring48590.2020.9129382
[22]
Andras Varga. 2010. OMNeT - Modeling and Tools for Network Simulation. Wehrle, Klaus and Günecs, Mesut and Gross, James, Springer Berlin, Heidelberg. 35--59 pages. https://doi.org/10.1007/978--3--642--12331--3_3
[23]
Hao Ye, Le Liang, Geoffrey Ye Li, JoonBeom Kim, Lu Lu, and May Wu. 2018. Machine Learning for Vehicular Networks: Recent Advances and Application Examples. IEEE Vehicular Technology Magazine, Vol. 13, 2 (2018), 94--101. https://doi.org/10.1109/MVT.2018.2811185
[24]
Jun Zheng and Qiong Wu. 2016. Performance Modeling and Analysis of the IEEE 802.11p EDCA Mechanism for VANET. IEEE Transactions on Vehicular Technology, Vol. 65, 4 (2016), 2673--2687. https://doi.org/10.1109/TVT.2015.2425960 io

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
DIVANet '23: Proceedings of the Int'l ACM Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications
October 2023
129 pages
ISBN:9798400703690
DOI:10.1145/3616392
This work is licensed under a Creative Commons Attribution International 4.0 License.

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 30 October 2023

Check for updates

Author Tags

  1. ai
  2. ieee 802.11p
  3. machine learning
  4. prediction
  5. qos
  6. v2v

Qualifiers

  • Research-article

Funding Sources

  • EU Horizon 2020 ITN-5VC

Conference

MSWiM '23
Sponsor:

Acceptance Rates

Overall Acceptance Rate 70 of 308 submissions, 23%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • 0
    Total Citations
  • 264
    Total Downloads
  • Downloads (Last 12 months)213
  • Downloads (Last 6 weeks)17
Reflects downloads up to 31 Dec 2024

Other Metrics

Citations

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media