Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

ART-Owen Scrambling

Published: 05 December 2023 Publication History

Abstract

We present a novel algorithm for implementing Owen-scrambling, combining the generation and distribution of the scrambling bits in a single self-contained compact process. We employ a context-free grammar to build a binary tree of symbols, and equip each symbol with a scrambling code that affects all descendant nodes. We nominate the grammar of adaptive regular tiles (ART) derived from the repetition-avoiding Thue-Morse word, and we discuss its potential advantages and shortcomings. Our algorithm has many advantages, including random access to samples, fixed time complexity, GPU friendliness, and scalability to any memory budget. Further, it provides two unique features over known methods: it admits optimization, and it is in-vertible, enabling screen-space scrambling of the high-dimensional Sobol sampler.

Supplementary Material

ZIP File (papers_127s4-file4.zip)
supplemental

References

[1]
Abdalla G. M. Ahmed, Till Niese, Hui Huang, and Oliver Deussen. 2017. An Adaptive Point Sampler on a Regular Lattice. ACM Trans. Graph. 36, 4, Article 138 (July 2017), 13 pages.
[2]
Abdalla G. M. Ahmed and Peter Wonka. 2020. Screen-Space Blue-Noise Diffusion of Monte Carlo Sampling Error via Hierarchical Ordering of Pixels. ACM Trans. Graph. 39, 6, Article 244 (Nov. 2020), 15 pages.
[3]
Abdalla G. M. Ahmed and Peter Wonka. 2021. Optimizing Dyadic Nets. ACM Trans. Graph. 40, 4, Article 141 (July 2021), 17 pages.
[4]
Brent Burley. 2020. Practical Hash-based Owen Scrambling. Journal of Computer Graphics Techniques (JCGT) 10, 4 (29 Dec. 2020), 1--20. http://jcgt.org/published/0009/04/01/
[5]
Per Christensen, Andrew Kensler, and Charlie Kilpatrick. 2018. Progressive Multi-Jittered Sample Sequences. Computer Graphics Forum 37, 4, 21--33.
[6]
Roy Cranley and Thomas NL Patterson. 1976. Randomization of Number-Theoretic Methods for Multiple Integration. SIAM J. Numer. Anal. 13, 6 (1976), 904--914.
[7]
Josef Dick and Friedrich Pillichshammer. 2010. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration. Cambridge University Press.
[8]
Ilja Friedel and Alexander Keller. 2002. Fast Generation of Randomized Low-Discrepancy Point Sets. In Monte Carlo and Quasi-Monte Carlo Methods 2000. Springer, 257--273.
[9]
Andrew S Glassner. 1995. Principles of Digital Image Synthesis. Elsevier.
[10]
Leonhard Grünschloß, Johannes Hanika, Ronnie Schwede, and Alexander Keller. 2008. (t, m, s)-Nets and Maximized Minimum Distance. In Monte Carlo and Quasi-Monte Carlo Methods 2006. Springer, 397--412.
[11]
Leonhard Grünschloß and Alexander Keller. 2009. (t, m, s)-Nets and Maximized Minimum Distance, Part II. In Monte Carlo and Quasi-Monte Carlo Methods 2008. Springer, 395--409.
[12]
Leonhard Grünschloß, Matthias Raab, and Alexander Keller. 2012. Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals. In Monte Carlo and Quasi-Monte Carlo Methods 2010. Springer, 399--408.
[13]
Andrew Helmer, Per Christensen, and Andrew Kensler. 2021. Stochastic Generation of (t, s) Sample Sequences. In Eurographics Symposium on Rendering - DL-only Track. The Eurographics Association.
[14]
Alexander Keller. 2013. Quasi-Monte Carlo Image Synthesis in a Nutshell. In Monte Carlo and Quasi-Monte Carlo Methods 2012. Springer, 213--249.
[15]
Thomas Kollig and Alexander Keller. 2002. Efficient Multidimensional Sampling. Computer Graphics Forum 21, 3, 557--563.
[16]
Johannes Kopf, Daniel Cohen-Or, Oliver Deussen, and Dani Lischinski. 2006. Recursive Wang Tiles for Real-Time Blue Noise. ACM Trans. Graph. 25, 3 (July 2006), 509--518.
[17]
M. Lothaire. 2002. Algebraic Combinatorics on Words. Cambridge University Press.
[18]
Jiří Matoušek. 1998. On the L2-Discrepancy for Anchored Boxes. J. Complex. 14, 4 (Dec. 1998), 527--556.
[19]
Don P. Mitchell. 1987. Generating Antialiased Images at Low Sampling Densities. SIGGRAPH Comput. Graph. 21, 4 (Aug. 1987), 65--72.
[20]
Harald Niederreiter. 1992. Random Number Generation and Quasi-Monte Carlo Methods. SIAM.
[21]
Victor Ostromoukhov. 2007. Sampling with Polyominoes. ACM Trans. Graph. 26, 3, Article 78 (July 2007).
[22]
Art B. Owen. 1995. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences. In Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing. Springer, 299--317.
[23]
Art B Owen. 1998. Scrambling Sobol'and Niederreiter-Xing Points. Journal of complexity 14, 4 (1998), 466--489.
[24]
Art B. Owen. 2003. Variance with Alternative Scramblings of Digital Nets. ACM Trans. Model. Comput. Simul. 13, 4 (Oct. 2003), 363--378.
[25]
Matt Pharr. 2019. Efficient Generation of Points that Satisfy Two-Dimensional Elementary Intervals. Journal of Computer Graphics Techniques (JCGT) 8, 1 (27 Feb. 2019), 56--68. http://jcgt.org/published/0008/01/04/
[26]
Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2023. Physically Based Rendering: From Theory to Implementation (4th ed.). MIT Press.
[27]
Claude E Shannon. 1948. A mathematical Theory of Communication. The Bell system technical journal 27, 3 (1948), 379--423.
[28]
Peter Shirley. 1991. Discrepancy as a Quality Measure for Sample Distributions. In Proc. Eurographics '91, Vol. 91. 183--194.
[29]
Il'ya Meerovich Sobol'. 1967. On the Distribution of Points in a Cube and the Approximate Evaluation of Integrals. Zhurnal Vychislitel'noi Matematiki i Matematicheskoi Fiziki 7, 4 (1967), 784--802.
[30]
Shu Tezuka. 1994. A generalization of Faure sequences and its efficient implementation. Technical Report, IBM Research, Tokyo Research Laboratory (1994).
[31]
Robert Ulichney. 1987. Digital Halftoning. MIT Press.
[32]
Florent Wachtel, Adrien Pilleboue, David Coeurjolly, Katherine Breeden, Gurprit Singh, Gaël Cathelin, Fernando de Goes, Mathieu Desbrun, and Victor Ostromoukhov. 2014. Fast Tile-Based Adaptive Sampling with User-Specified Fourier Spectra. ACM Trans. Graph. 33, 4, Article 56 (July 2014), 11 pages.

Cited By

View all
  • (2024)Quad-Optimized Low-Discrepancy SequencesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657431(1-9)Online publication date: 13-Jul-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 42, Issue 6
December 2023
1565 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/3632123
Issue’s Table of Contents
This work is licensed under a Creative Commons Attribution International 4.0 License.

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 05 December 2023
Published in TOG Volume 42, Issue 6

Check for updates

Author Tags

  1. dyadic nets
  2. owen scrambling
  3. quasi-monte carlo
  4. sampling
  5. sobol sequences

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)251
  • Downloads (Last 6 weeks)20
Reflects downloads up to 03 Sep 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Quad-Optimized Low-Discrepancy SequencesACM SIGGRAPH 2024 Conference Papers10.1145/3641519.3657431(1-9)Online publication date: 13-Jul-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media