Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
10.1145/3620665.3640388acmconferencesArticle/Chapter ViewAbstractPublication PagesasplosConference Proceedingsconference-collections
research-article
Open access

A Fault-Tolerant Million Qubit-Scale Distributed Quantum Computer

Published: 27 April 2024 Publication History

Abstract

A million qubit-scale quantum computer is essential to realize the quantum supremacy. Modern large-scale quantum computers integrate multiple quantum computers located in dilution refrigerators (DR) to overcome each DR's unscaling cooling budget. However, a large-scale multi-DR quantum computer introduces its unique challenges (i.e., slow and erroneous inter-DR entanglement, increased qubit scale), and they make the baseline error handling mechanism ineffective by increasing the number of gate operations and the inter-DR communication latency to decode and correct errors. Without resolving these challenges, it is impossible to realize a fault-tolerant large-scale multi-DR quantum computer.
In this paper, we propose a million qubit-scale distributed quantum computer which uses a novel error handling mechanism enabling fault-tolerant multi-DR quantum computing. First, we apply a low-overhead multi-DR error syndrome measurement (ESM) sequence to reduce both the number of gate operations and the error rate. Second, we apply a scalable multi-DR error decoding unit (EDU) architecture to maximize both the decoding speed and accuracy. Our multi-DR error handling SW-HW co-design improves the ESM latency, ESM errors, EDU latency, and EDU accuracy by 3.7 times, 2.4 times, 685 times, and 6.1 · 1010 times, respectively.
With our scheme applied to assumed voltage-scaled CMOS and mature ERSFQ technologies, we successfully build a fault-tolerant million qubit-scale quantum computer.

References

[1]
Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M. Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574(7779):505--510, Oct 2019.
[2]
Joseph Bardin. Beyond-classical computing using superconducting quantum processors. In 2022 IEEE International Solid-State Circuits Conference (ISSCC), volume 65, pages 422--424. IEEE, 2022.
[3]
Joseph C. Bardin, Evan Jeffrey, Erik Lucero, Trent Huang, Sayan Das, Daniel Thomas Sank, Ofer Naaman, Anthony Edward Megrant, Rami Barends, Ted White, Marissa Giustina, Kevin J. Satzinger, Kunal Arya, Pedram Roushan, Benjamin Chiaro, Julian Kelly, Zijun Chen, Brian Burkett, Yu Chen, Andrew Dunsworth, Austin Fowler, Brooks Foxen, Craig Gidney, Rob Graff, Paul Klimov, Josh Mutus, Matthew J. McEwen, Matthew Neeley, Charles J. Neill, Chris Quintana, Amit Vainsencher, Hartmut Neven, and John Martinis. Design and characterization of a 28-nm bulk-cmos cryogenic quantum controller dissipating less than 2 mw at 3 k. IEEE Journal of Solid-State Circuits, 54(11):3043--3060, 2019.
[4]
R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and John M. Martinis. Superconducting quantum circuits at the surface code threshold for fault tolerance. Nature, 508(7497):500--503, Apr 2014.
[5]
Bluefors. We made 1 000 qubits for quantum computing possible. https://bluefors.com/blog/we-made-1-000-qubits-for-quantum-computing-possible/, 2023. [Online Accessed, 09-August-2023].
[6]
Sergey Bravyi, Oliver Dial, Jay M Gambetta, Darío Gil, and Zaira Nazario. The future of quantum computing with superconducting qubits. Journal of Applied Physics, 132(16), 2022.
[7]
Ilkwon Byun, Junpyo Kim, Dongmoon Min, Ikki Nagaoka, Kosuke Fukumitsu, Iori Ishikawa, Teruo Tanimoto, Masamitsu Tanaka, Koji Inoue, and Jangwoo Kim. Xqsim: modeling cross-technology control processors for 10+ k qubit quantum computers. In Proceedings of the 49th Annual International Symposium on Computer Architecture, pages 366--382, 2022.
[8]
P. Campagne-Ibarcq, E. Zalys-Geller, A. Narla, S. Shankar, P. Reinhold, L. Burkhart, C. Axline, W. Pfaff, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. Deterministic remote entanglement of superconducting circuits through microwave two-photon transitions. Phys. Rev. Lett., 120:200501, May 2018.
[9]
Sudipto Chakraborty, David J. Frank, Kevin Tien, Pat Rosno, Mark Yeck, Joseph A. Glick, Raphael Robertazzi, Ray Richetta, John F. Bulzacchelli, Devin Underwood, Daniel Ramirez, Dereje Yilma, Andrew Davies, Rajiv V. Joshi, Shawn D. Chambers, Scott Lekuch, Ken Inoue, Dorothy Wisnieff, Christian W. Baks, Donald S. Bethune, John Timmerwilke, Thomas Fox, Peilin Song, Blake R. Johnson, Brian P. Gaucher, and Daniel J. Friedman. A cryo-cmos low-power semi-autonomous transmon qubit state controller in 14-nm finfet technology. IEEE Journal of Solid-State Circuits, 57(11):3258--3273, 2022.
[10]
Christopher Chamberland, Luis Goncalves, Prasahnt Sivarajah, Eric Peterson, and Sebastian Grimberg. Techniques for combining fast local decoders with global decoders under circuit-level noise. Quantum Science and Technology, 8(4):045011, 2023.
[11]
Liangyu Chen, Hang-Xi Li, Yong Lu, Christopher W. Warren, Christian J. Križan, Sandoko Kosen, Marcus Rommel, Shahnawaz Ahmed, Amr Osman, Janka Biznárová, Anita Fadavi Roudsari, Benjamin Lienhard, Marco Caputo, Kestutis Grigoras, Leif Grönberg, Joonas Govenius, Anton Frisk Kockum, Per Delsing, Jonas Bylander, and Giovanna Tancredi. Transmon qubit readout fidelity at the threshold for quantum error correction without a quantum-limited amplifier. npj Quantum Information, 9(1):26, Mar 2023.
[12]
Yu Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly, B. Campbell, Z. Chen, B. Chiaro, A. Dunsworth, E. Jeffrey, A. Megrant, J. Y. Mutus, P. J. J. O'Malley, C. M. Quintana, D. Sank, A. Vainsencher, J. Wenner, T. C. White, Michael R. Geller, A. N. Cleland, and John M. Martinis. Qubit architecture with high coherence and fast tunable coupling. Phys. Rev. Lett., 113:220502, Nov 2014.
[13]
Zijun Chen, Julian Kelly, Chris Quintana, R. Barends, B. Campbell, Yu Chen, B. Chiaro, A. Dunsworth, A. G. Fowler, E. Lucero, E. Jeffrey, A. Megrant, J. Mutus, M. Neeley, C. Neill, P. J. J. O'Malley, P. Roushan, D. Sank, A. Vainsencher, J. Wenner, T. C. White, A. N. Korotkov, and John M. Martinis. Measuring and suppressing quantum state leakage in a superconducting qubit. Phys. Rev. Lett., 116:020501, Jan 2016.
[14]
H.-L. Chiang, R. A. Hadi, J.-F. Wang, H.-C. Han, J.-J. Wu, H.-H. Hsieh, J.-J. Horng, W.-S. Chou, B.-S. Lien, C.-H. Chang, Y.-C. Chen, Y.-H. Wang, T.-C. Chen, J.-C. Liu, Y.-C. Liu, M.-H. Chiang, K.-H. Kao, B. Pulicherla, J. Cai, C.-S. Chang, K.-W. Su, K.-L. Cheng, T.-J. Yeh, Y.-C. Peng, C. Enz, M.-C. F. Chang, M.-F. Chang, H.-S. P. Wong, and I. P. Radu. How fault-tolerant quantum computing benefits from cryo-cmos technology. In 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), pages 1--2, 2023.
[15]
Jerry M. Chow, A. D. Córcoles, Jay M. Gambetta, Chad Rigetti, B. R. Johnson, John A. Smolin, J. R. Rozen, George A. Keefe, Mary B. Rothwell, Mark B. Ketchen, and M. Steffen. Simple all-microwave entangling gate for fixed-frequency superconducting qubits. Phys. Rev. Lett., 107:080502, Aug 2011.
[16]
Jerry M Chow, Jay M Gambetta, Andrew W Cross, Seth T Merkel, Chad Rigetti, and M Steffen. Microwave-activated conditional-phase gate for superconducting qubits. New Journal of Physics, 15(11):115012, nov 2013.
[17]
Jerry M. Chow, Jay M. Gambetta, Easwar Magesan, David W. Abraham, Andrew W. Cross, B. R. Johnson, Nicholas A. Masluk, Colm A. Ryan, John A. Smolin, Srikanth J. Srinivasan, and M. Steffen. Implementing a strand of a scalable fault-tolerant quantum computing fabric. Nature Communications, 5(1):4015, Jun 2014.
[18]
Poulami Das, Aditya Locharla, and Cody Jones. Lilliput: A lightweight low-latency lookup-table decoder for near-term quantum error correction. In Proceedings of the 27th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, ASPLOS '22, page 541--553, New York, NY, USA, 2022. Association for Computing Machinery.
[19]
Poulami Das, Christopher A. Pattison, Srilatha Manne, Douglas M. Carmean, Krysta M. Svore, Moinuddin Qureshi, and Nicolas Delfosse. Afs: Accurate, fast, and scalable error-decoding for fault-tolerant quantum computers. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 259--273, 2022.
[20]
R. Dassonneville, T. Ramos, V. Milchakov, L. Planat, É. Dumur, F. Foroughi, J. Puertas, S. Leger, K. Bharadwaj, J. Delaforce, C. Naud, W. Hasch-Guichard, J. J. García-Ripoll, N. Roch, and O. Buisson. Fast high-fidelity quantum nondemolition qubit readout via a nonpertur-bative cross-kerr coupling. Phys. Rev. X, 10:011045, Feb 2020.
[21]
Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topo-logical quantum memory. Journal of Mathematical Physics, 43(9):4452--4505, 08 2002.
[22]
A. Dewes, F. R. Ong, V. Schmitt, R. Lauro, N. Boulant, P. Bertet, D. Vion, and D. Esteve. Characterization of a two-transmon processor with individual single-shot qubit readout. Phys. Rev. Lett., 108:057002, Feb 2012.
[23]
Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin, Richard Rines, Thomas Propson, and Frederic T. Chong. Systematic crosstalk mitigation for superconducting qubits via frequency-aware compilation. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 201--214, 2020.
[24]
Austin G Fowler. Optimal complexity correction of correlated errors in the surface code. arXiv preprint arXiv:1310.0863, 2013.
[25]
Austin G. Fowler, Simon J. Devitt, and Cody Jones. Surface code implementation of block code state distillation. Scientific Reports, 3(1):1939, Jun 2013.
[26]
Austin G. Fowler and Craig Gidney. Low overhead quantum computation using lattice surgery, 2019.
[27]
Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86:032324, Sep 2012.
[28]
X. Fu, M. A. Rol, C. C. Bultink, J. van Someren, N. Khammassi, I. Ashraf, R. F. L. Vermeulen, J. C. de Sterke, W. J. Vlothuizen, R. N. Schouten, C. G. Almudever, L. DiCarlo, and K. Bertels. A microarchitecture for a superconducting quantum processor. IEEE Micro, 38(3):40--47, 2018.
[29]
Spiro Gicev, Lloyd CL Hollenberg, and Muhammad Usman. A scalable and fast artificial neural network syndrome decoder for surface codes. Quantum, 7:1058, 2023.
[30]
Craig Gidney. Stim: a fast stabilizer circuit simulator. Quantum, 5:497, July 2021.
[31]
Craig Gidney and Martin Ekerå. How to factor 2048 bit RSA integers in 8 hours using 20 million noisy qubits. Quantum, 5:433, April 2021.
[32]
Simon Gustavsson, Olger Zwier, Jonas Bylander, Fei Yan, Fumiki Yoshihara, Yasunobu Nakamura, Terry P. Orlando, and William D. Oliver. Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions. Phys. Rev. Lett., 110:040502, Jan 2013.
[33]
Johannes Heinsoo, Christian Kraglund Andersen, Ants Remm, Sebastian Krinner, Theodore Walter, Yves Salathé, Simone Gasparinetti, Jean-Claude Besse, Anton Potočnik, Andreas Wallraff, and Christopher Eichler. Rapid high-fidelity multiplexed readout of superconducting qubits. Phys. Rev. Appl., 10:034040, Sep 2018.
[34]
Daniel B. Higginbottom, Alexander T. K. Kurkjian, Camille Chartrand, Moein Kazemi, Nicholas A. Brunelle, Evan R. MacQuarrie, James R. Klein, Nicholas R. Lee-Hone, Jakub Stacho, Myles Ruether, Camille Bowness, Laurent Bergeron, Adam DeAbreu, Stephen R. Harrigan, Joshua Kanaganayagam, Danica W. Marsden, Timothy S. Richards, Leea A. Stott, Sjoerd Roorda, Kevin J. Morse, Michael L. W. Thewalt, and Stephanie Simmons. Optical observation of single spins in silicon. Nature, 607(7918):266--270, Jul 2022.
[35]
Oscar Higgott and Craig Gidney. Sparse blossom: correcting a million errors per core second with minimum-weight matching. arXiv preprint arXiv:2303.15933, 2023.
[36]
Adam Holmes, Mohammad Reza Jokar, Ghasem Pasandi, Yongshan Ding, Massoud Pedram, and Frederic T. Chong. Nisq+: Boosting quantum computing power by approximating quantum error correction. In 2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture (ISCA), pages 556--569, 2020.
[37]
Dominic Horsman, Austin G Fowler, Simon Devitt, and Rodney Van Meter. Surface code quantum computing by lattice surgery. New Journal of Physics, 14(12):123011, dec 2012.
[38]
Fei Hua, Yanhao Chen, Yuwei Jin, Chi Zhang, Ari Hayes, Youtao Zhang, and Eddy Z. Zhang. Autobraid: A framework for enabling efficient surface code communication in quantum computing. In MICRO-54: 54th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO '21, page 925--936, New York, NY, USA, 2021. Association for Computing Machinery.
[39]
IBM. Ibm's roadmap for scaling quantum technology. https://research.ibm.com/blog/ibm-quantum-roadmap, 2020. [Online Accessed, 09-August-2023].
[40]
IBM. Ibm scientists cool down the world's largest quantum-ready cryogenic concept system. https://research.ibm.com/blog/goldeneye-cryogenic-concept-system, 2022. [Online Accessed, 09-August-2023].
[41]
IBM. Ibmq. https://quantum-computing.ibm.com, 2023. [Online Accessed, 05-July-2023].
[42]
Evan Jeffrey, Daniel Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O'Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 112:190504, May 2014.
[43]
X. Y. Jin, A. Kamal, A. P. Sears, T. Gudmundsen, D. Hover, J. Miloshi, R. Slattery, F. Yan, J. Yoder, T. P. Orlando, S. Gustavsson, and W. D. Oliver. Thermal and residual excited-state population in a 3d transmon qubit. Phys. Rev. Lett., 114:240501, Jun 2015.
[44]
Hamza Jnane, Brennan Undseth, Zhenyu Cai, Simon C Benjamin, and Bálint Koczor. Multicore quantum computing. Physical Review Applied, 18(4):044064, 2022.
[45]
J. E. Johnson, C. Macklin, D. H. Slichter, R. Vijay, E. B. Weingarten, John Clarke, and I. Siddiqi. Heralded state preparation in a superconducting qubit. Phys. Rev. Lett., 109:050506, Aug 2012.
[46]
Mohammad Reza Jokar, Richard Rines, Ghasem Pasandi, Haolin Cong, Adam Holmes, Yunong Shi, Massoud Pedram, and Frederic T. Chong. Digiq: A scalable digital controller for quantum computers using sfq logic. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 400--414, 2022.
[47]
N Cody Jones, Rodney Van Meter, Austin G Fowler, Peter L McMahon, Jungsang Kim, Thaddeus D Ladd, and Yoshihisa Yamamoto. Layered architecture for quantum computing. Physical Review X, 2(3):031007, 2012.
[48]
Kiseo Kang, Donggyu Minn, Seongun Bae, Jaeho Lee, Seokhyeong Kang, Moonjoo Lee, Ho-Jin Song, and Jae-Yoon Sim. A 40-nm cryocmos quantum controller ic for superconducting qubit. IEEE Journal of Solid-State Circuits, 57(11):3274--3287, 2022.
[49]
J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White, D. Sank, J. Y. Mutus, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I.-C. Hoi, C. Neill, P. J. J. O'Malley, C. Quintana, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis. State preservation by repetitive error detection in a superconducting quantum circuit. Nature, 519(7541):66--69, Mar 2015.
[50]
Richard E Kessler. The alpha 21264 microprocessor. IEEE micro, 19(2):24--36, 1999.
[51]
D. E. Kirichenko, S. Sarwana, and A. F. Kirichenko. Zero static power dissipation biasing of rsfq circuits. IEEE Transactions on Applied Superconductivity, 21(3):776--779, 2011.
[52]
Ian D. Kivlichan, Craig Gidney, Dominic W. Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, Hartmut Neven, and Ryan Babbush. Improved Fault-Tolerant Quantum Simulation of Condensed-Phase Correlated Electrons via Trotterization. Quantum, 4:296, July 2020.
[53]
Morten Kjaergaard, Mollie E. Schwartz, Ami Greene, Gabriel O. Samach, Andreas Bengtsson, Michael O'Keeffe, Christopher M. McNally, Jochen Braumüller, David K. Kim, Philip Krantz, Milad Marvian, Alexander Melville, Bethany M. Niedzielski, Youngkyu Sung, Roni Winik, Jonilyn Yoder, Danna Rosenberg, Kevin Obenland, Seth Lloyd, Terry P. Orlando, Iman Marvian, Simon Gustavsson, and William D. Oliver. Programming a quantum computer with quantum instructions, 2020.
[54]
Philip Krantz, Andreas Bengtsson, Michaël Simoen, Simon Gustavsson, Vitaly Shumeiko, W. D. Oliver, C. M. Wilson, Per Delsing, and Jonas Bylander. Single-shot read-out of a superconducting qubit using a josephson parametric oscillator. Nature Communications, 7(1):11417, May 2016.
[55]
Philip Krantz, Morten Kjaergaard, Fei Yan, Terry P Orlando, Simon Gustavsson, and William D Oliver. A quantum engineer's guide to superconducting qubits. Applied physics reviews, 6(2), 2019.
[56]
H. Krauter, D. Salart, C. A. Muschik, J. M. Petersen, Heng Shen, T. Fernholz, and E. S. Polzik. Deterministic quantum teleportation between distant atomic objects. Nature Physics, 9(7):400--404, Jul 2013.
[57]
P. Kurpiers, P. Magnard, T. Walter, B. Royer, M. Pechal, J. Heinsoo, Y. Salathé, A. Akin, S. Storz, J.-C. Besse, S. Gasparinetti, A. Blais, and A. Wallraff. Deterministic quantum state transfer and remote entanglement using microwave photons. Nature, 558(7709):264--267, Jun 2018.
[58]
Pierre Simon Laplace. Théorie analytique des probabilités. Courcier, 1814.
[59]
Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean, Nathan Wiebe, and Ryan Babbush. Even more efficient quantum computations of chemistry through tensor hyper-contraction. PRX Quantum, 2:030305, Jul 2021.
[60]
N. Leung, Y. Lu, S. Chakram, R. K. Naik, N. Earnest, R. Ma, K. Jacobs, A. N. Cleland, and D. I. Schuster. Deterministic bidirectional communication and remote entanglement generation between superconducting qubits. npj Quantum Information, 5(1):18, Feb 2019.
[61]
Ying Li and Simon C. Benjamin. Hierarchical surface code for network quantum computing with modules of arbitrary size. Phys. Rev. A, 94:042303, Oct 2016.
[62]
Daniel Litinski. A Game of Surface Codes: Large-Scale Quantum Computing with Lattice Surgery. Quantum, 3:128, March 2019.
[63]
Daniel Litinski and Felix von Oppen. Lattice Surgery with a Twist: Simplifying Clifford Gates of Surface Codes. Quantum, 2:62, May 2018.
[64]
A. Lupaşcu, S. Saito, T. Picot, P. C. de Groot, C. J. P. M. Harmans, and J. E. Mooij. Quantum non-demolition measurement of a superconducting two-level system. Nature Physics, 3(2):119--123, Feb 2007.
[65]
P. Magnard, S. Storz, P. Kurpiers, J. Schär, F. Marxer, J. Lütolf, T. Walter, J.-C. Besse, M. Gabureac, K. Reuer, A. Akin, B. Royer, A. Blais, and A. Wallraff. Microwave quantum link between superconducting circuits housed in spatially separated cryogenic systems. Phys. Rev. Lett., 125:260502, Dec 2020.
[66]
François Mallet, Florian R. Ong, Agustin Palacios-Laloy, François Nguyen, Patrice Bertet, Denis Vion, and Daniel Esteve. Single-shot qubit readout in circuit quantum electrodynamics. Nature Physics, 5(11):791--795, Nov 2009.
[67]
Fabian Marxer, Antti Vepsäläinen, Shan W. Jolin, Jani Tuorila, Alessandro Landra, Caspar Ockeloen-Korppi, Wei Liu, Olli Ahonen, Adrian Auer, Lucien Belzane, Ville Bergholm, Chun Fai Chan, Kok Wai Chan, Tuukka Hiltunen, Juho Hotari, Eric Hyyppä, Joni Ikonen, David Janzso, Miikka Koistinen, Janne Kotilahti, Tianyi Li, Jyrgen Luus, Miha Papic, Matti Partanen, Jukka Räbinä, Jari Rosti, Mykhailo Savytskyi, Marko Seppälä, Vasilii Sevriuk, Eelis Takala, Brian Tarasinski, Manish J. Thapa, Francesca Tosto, Natalia Vorobeva, Liuqi Yu, Kuan Yen Tan, Juha Hassel, Mikko Möttönen, and Johannes Heinsoo. Long-distance transmon coupler with cz-gate fidelity above 99.8%. PRX Quantum, 4:010314, Feb 2023.
[68]
Elisha Siddiqui Matekole, Yao-Lung Leo Fang, and Meifeng Lin. Methods and results for quantum optimal pulse control on superconducting qubit systems. In 2022 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pages 600--606, 2022.
[69]
R McDermott, M G Vavilov, B L T Plourde, F K Wilhelm, P J Liebermann, O A Mukhanov, and T A Ohki. Quantum-classical interface based on single flux quantum digital logic. Quantum Science and Technology, 3(2):024004, jan 2018.
[70]
David C. McKay, Christopher J. Wood, Sarah Sheldon, Jerry M. Chow, and Jay M. Gambetta. Efficient z gates for quantum computing. Phys. Rev. A, 96:022330, Aug 2017.
[71]
Kai Meinerz, Chae-Yeun Park, and Simon Trebst. Scalable neural decoder for topological surface codes. Physical Review Letters, 128(8):080505, 2022.
[72]
Microsoft. Microsoft achieves first milestone towards a quantum supercomputer. https://cloudblogs.microsoft.com/quantum/2023/06/21/microsoft-achieves-first-milestone-towards-a-quantum-supercomputer, 2023. [Online Accessed, 09-August-2023].
[73]
Dongmoon Min, Junpyo Kim, Junhyuk Choi, Ilkwon Byun, Masamitsu Tanaka, Koji Inoue, and Jangwoo Kim. Qisim: Architecting 10+ k qubit qc interfaces toward quantum supremacy. In Proceedings of the 50th Annual International Symposium on Computer Architecture, pages 1--16, 2023.
[74]
C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim. Large-scale modular quantum-computer architecture with atomic memory and photonic interconnects. Phys. Rev. A, 89:022317, Feb 2014.
[75]
Hartmut Neven. Quantum summer symposium 2020 opening keynote. https://www.youtube.com/watch?v=TJ6vBNEQReU, 2020. [Online Accessed, 09-August-2023].
[76]
Michael A Nielsen and Isaac L Chuang. Quantum computation and quantum information. Phys. Today, 54(2):60, 2001.
[77]
Ramil Nigmatullin, Christopher J Ballance, Niel de Beaudrap, and Simon C Benjamin. Minimally complex ion traps as modules for quantum communication and computing. New Journal of Physics, 18(10):103028, oct 2016.
[78]
Hanhee Paik, D. I. Schuster, Lev S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Observation of high coherence in josephson junction qubits measured in a three-dimensional circuit qed architecture. Phys. Rev. Lett., 107:240501, Dec 2011.
[79]
Jongseok Park, Sushil Subramanian, Lester Lampert, Todor Mladenov, Ilya Klotchkov, Dileep J. Kurian, Esdras Juarez-Hernandez, Brando Perez Esparza, Sirisha Rani Kale, Asma Beevi K. T., Shavindra P. Premaratne, Thomas F. Watson, Satoshi Suzuki, Mustafijur Rahman, Jaykant B. Timbadiya, Saksham Soni, and Stefano Pellerano. A fully integrated cryo-cmos soc for state manipulation, readout, and high-speed gate pulsing of spin qubits. IEEE Journal of Solid-State Circuits, 56(11):3289--3306, 2021.
[80]
Divya Prasad, Manoj Vangala, Mudit Bhargava, Arnout Beckers, Alexander Grill, Davide Tierno, Krishnendra Nathella, Thanusree Achuthan, David Pietromonaco, James Myers, Matthew Walker, Bertrand Parvais, and Brian Cline. Cryo-computing for infrastructure applications: A technology-to-microarchitecture co-optimization study. In 2022 International Electron Devices Meeting (IEDM), pages 23.5.1--23.5.4, 2022.
[81]
Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023.
[82]
Gokul Subramanian Ravi, Jonathan M. Baker, Arash Fayyazi, Sophia Fuhui Lin, Ali Javadi-Abhari, Massoud Pedram, and Frederic T. Chong. Better than worst-case decoding for quantum error correction. In Proceedings of the 28th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS 2023, page 88--102, New York, NY, USA, 2023. Association for Computing Machinery.
[83]
Matthew Reagor, Christopher B. Osborn, Nikolas Tezak, Alexa Staley, Guenevere Prawiroatmodjo, Michael Scheer, Nasser Alidoust, Eyob A. Sete, Nicolas Didier, Marcus P. da Silva, Ezer Acala, Joel Angeles, Andrew Bestwick, Maxwell Block, Benjamin Bloom, Adam Bradley, Catvu Bui, Shane Caldwell, Lauren Capelluto, Rick Chilcott, Jeff Cordova, Genya Crossman, Michael Curtis, Saniya Deshpande, Tristan El Bouayadi, Daniel Girshovich, Sabrina Hong, Alex Hudson, Peter Karalekas, Kat Kuang, Michael Lenihan, Riccardo Manenti, Thomas Manning, Jayss Marshall, Yuvraj Mohan, William O'Brien, Johannes Otterbach, Alexander Papageorge, Jean-Philip Paquette, Michael Pelstring, Anthony Polloreno, Vijay Rawat, Colm A. Ryan, Russ Renzas, Nick Rubin, Damon Russel, Michael Rust, Diego Scarabelli, Michael Selvanayagam, Rodney Sinclair, Robert Smith, Mark Suska, Ting-Wai To, Mehrnoosh Vahidpour, Nagesh Vodrahalli, Tyler Whyland, Kamal Yadav, William Zeng, and Chad T. Rigetti. Demonstration of universal parametric entangling gates on a multi-qubit lattice. Science Advances, 4(2):eaao3603, 2018.
[84]
M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J. Schoelkopf. High-fidelity readout in circuit quantum electrodynamics using the jaynes-cummings nonlinearity. Phys. Rev. Lett., 105:173601, Oct 2010.
[85]
L. Riesebos, X. Fu, S. Varsamopoulos, C. G. Almudever, and K. Bertels. Pauli frames for quantum computer architectures. In Proceedings of the 54th Annual Design Automation Conference 2017, DAC '17, New York, NY, USA, 2017. Association for Computing Machinery.
[86]
M. A. Rol, C. C. Bultink, T. E. O'Brien, S. R. de Jong, L. S. Theis, X. Fu, F. Luthi, R. F. L. Vermeulen, J. C. de Sterke, A. Bruno, D. Deurloo, R. N. Schouten, F. K. Wilhelm, and L. DiCarlo. Restless tuneup of high-fidelity qubit gates. Phys. Rev. Appl., 7:041001, Apr 2017.
[87]
Yves Salathé, Philipp Kurpiers, Thomas Karg, Christian Lang, Christian Kraglund Andersen, Abdulkadir Akin, Sebastian Krinner, Christopher Eichler, and Andreas Wallraff. Low-latency digital signal processing for feedback and feedforward in quantum computing and communication. Phys. Rev. Appl., 9:034011, Mar 2018.
[88]
Lieze Schindler, Johannes A Delport, and Coenrad J Fourie. The coldflux rsfq cell library for mit-ll sfq5ee fabrication process. IEEE Transactions on Applied Superconductivity, 32(2):1--7, 2021.
[89]
Zheng Shan, Yu Zhu, and Bo Zhao. A high-performance compilation strategy for multiplexing quantum control architecture. Scientific Reports, 12(1):7132, May 2022.
[90]
Sarah Sheldon, Lev S. Bishop, Easwar Magesan, Stefan Filipp, Jerry M. Chow, and Jay M. Gambetta. Characterizing errors on qubit operations via iterative randomized benchmarking. Phys. Rev. A, 93:012301, Jan 2016.
[91]
Sarah Sheldon, Easwar Magesan, Jerry M. Chow, and Jay M. Gambetta. Procedure for systematically tuning up cross-talk in the cross-resonance gate. Phys. Rev. A, 93:060302, Jun 2016.
[92]
Milap Sheth, Sara Zafar Jafarzadeh, and Vlad Gheorghiu. Neural ensemble decoding for topological quantum error-correcting codes. Physical Review A, 101(3):032338, 2020.
[93]
Samuel C Smith, Benjamin J Brown, and Stephen D Bartlett. Local predecoder to reduce the bandwidth and latency of quantum error correction. Physical Review Applied, 19(3):034050, 2023.
[94]
Aaron Somoroff, Quentin Ficheux, Raymond A. Mencia, Haonan Xiong, Roman Kuzmin, and Vladimir E. Manucharyan. Millisecond coherence in a superconducting qubit. Phys. Rev. Lett., 130:267001, Jun 2023.
[95]
E. W. Stacy. A generalization of the gamma distribution. The Annals of Mathematical Statistics, 33(3):1187--1192, 1962.
[96]
Aaron Stillmaker and Bevan Baas. Scaling equations for the accurate prediction of cmos device performance from 180nm to 7nm. Integration, 58:74--81, 2017.
[97]
Youngkyu Sung, Leon Ding, Jochen Braumüller, Antti Vepsäläinen, Bharath Kannan, Morten Kjaergaard, Ami Greene, Gabriel O. Samach, Chris McNally, David Kim, Alexander Melville, Bethany M. Niedzielski, Mollie E. Schwartz, Jonilyn L. Yoder, Terry P. Orlando, Simon Gustavsson, and William D. Oliver. Realization of high-fidelity cz and zz-free iswap gates with a tunable coupler. Phys. Rev. X, 11:021058, Jun 2021.
[98]
Yasunari Suzuki, Takanori Sugiyama, Tomochika Arai, Wang Liao, Koji Inoue, and Teruo Tanimoto. Q3de: A fault-tolerant quantum computer architecture for multi-bit burst errors by cosmic rays. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1110--1125. IEEE, 2022.
[99]
Swamit S. Tannu, Zachary A. Myers, Prashant J. Nair, Douglas M. Carmean, and Moinuddin K. Qureshi. Taming the instruction bandwidth of quantum computers via hardware-managed error correction. In Proceedings of the 50th Annual IEEE/ACM International Symposium on Microarchitecture, MICRO-50 '17, page 679--691, New York, NY, USA, 2017. Association for Computing Machinery.
[100]
Barbara M. Terhal. Quantum error correction for quantum memories. Rev. Mod. Phys., 87:307--346, Apr 2015.
[101]
Sergey K Tolpygo, Justin L Mallek, Vladimir Bolkhovsky, Ravi Rastogi, Evan B Golden, Terence J Weir, Leonard M Johnson, and Mark A Gouker. Progress toward superconductor electronics fabrication process with planarized nbn and nbn/nb layers. IEEE Transactions on Applied Superconductivity, 33(5):1--12, 2023.
[102]
S. Touzard, A. Kou, N. E. Frattini, V. V. Sivak, S. Puri, A. Grimm, L. Frunzio, S. Shankar, and M. H. Devoret. Gated conditional displacement readout of superconducting qubits. Phys. Rev. Lett., 122:080502, Feb 2019.
[103]
Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka Tabuchi. Qecool: On-line quantum error correction with a superconducting decoder for surface code. In 2021 58th ACM/IEEE Design Automation Conference (DAC), pages 451--456, 2021.
[104]
Yosuke Ueno, Masaaki Kondo, Masamitsu Tanaka, Yasunari Suzuki, and Yutaka Tabuchi. Qulatis: A quantum error correction methodology toward lattice surgery. In 2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages 274--287, 2022.
[105]
Suhas Vittal, Poulami Das, and Moinuddin Qureshi. Astrea: Accurate quantum error-decoding via practical minimum-weight perfect-matching. In Proceedings of the 50th Annual International Symposium on Computer Architecture, ISCA '23, New York, NY, USA, 2023. Association for Computing Machinery.
[106]
Chenlu Wang, Xuegang Li, Huikai Xu, Zhiyuan Li, Junhua Wang, Zhen Yang, Zhenyu Mi, Xuehui Liang, Tang Su, Chuhong Yang, Guangyue Wang, Wenyan Wang, Yongchao Li, Mo Chen, Chengyao Li, Kehuan Linghu, Jiaxiu Han, Yingshan Zhang, Yulong Feng, Yu Song, Teng Ma, Jingning Zhang, Ruixia Wang, Peng Zhao, Weiyang Liu, Guangming Xue, Yirong Jin, and Haifeng Yu. Towards practical quantum computers: transmon qubit with a lifetime approaching 0.5 milliseconds. npj Quantum Information, 8(1):3, Jan 2022.
[107]
Anbang Wu, Yufei Ding, and Ang Li. Collcomm: Enabling efficient collective quantum communication based on epr buffering. arXiv preprint arXiv:2208.06724, 2022.
[108]
Anbang Wu, Gushu Li, Hezi Zhang, Gian Giacomo Guerreschi, Yufei Ding, and Yuan Xie. A synthesis framework for stitching surface code with superconducting quantum devices. In Proceedings of the 49th Annual International Symposium on Computer Architecture, ISCA '22, page 337--350, New York, NY, USA, 2022. Association for Computing Machinery.
[109]
Anbang Wu, Hezi Zhang, Gushu Li, Alireza Shabani, Yuan Xie, and Yufei Ding. Autocomm: A framework for enabling efficient communication in distributed quantum programs. In 2022 55th IEEE/ACM International Symposium on Microarchitecture (MICRO), pages 1027--1041, 2022.
[110]
Yue Wu and Lin Zhong. Fusion blossom: Fast mwpm decoders for qec. arXiv preprint arXiv:2305.08307, 2023.
[111]
Xiao Xue, Bishnu Patra, Jeroen P. G. van Dijk, Nodar Samkharadze, Sushil Subramanian, Andrea Corna, Brian Paquelet Wuetz, Charles Jeon, Farhana Sheikh, Esdras Juarez-Hernandez, Brando Perez Esparza, Huzaifa Rampurawala, Brent Carlton, Surej Ravikumar, Carlos Nieva, Sungwon Kim, Hyung-Jin Lee, Amir Sammak, Giordano Scappucci, Menno Veldhorst, Fabio Sebastiano, Masoud Babaie, Stefano Pellerano, Edoardo Charbon, and Lieven M. K. Vandersypen. Cmos-based cryogenic control of silicon quantum circuits. Nature, 593(7858):205--210, May 2021.
[112]
Fei Yan, Simon Gustavsson, Archana Kamal, Jeffrey Birenbaum, Adam P. Sears, David Hover, Ted J. Gudmundsen, Danna Rosenberg, Gabriel Samach, S. Weber, Jonilyn L. Yoder, Terry P. Orlando, John Clarke, Andrew J. Kerman, and William D. Oliver. The flux qubit revisited to enhance coherence and reproducibility. Nature Communications, 7(1):12964, Nov 2016.
[113]
Y. P. Zhong, H.-S. Chang, K. J. Satzinger, M.-H. Chou, A. Bienfait, C. R. Conner, É Dumur, J. Grebel, G. A. Peairs, R. G. Povey, D. I. Schuster, and A. N. Cleland. Violating bell's inequality with remotely connected superconducting qubits. Nature Physics, 15(8):741--744, Aug 2019.
[114]
Youpeng Zhong, Hung-Shen Chang, Audrey Bienfait, Étienne Dumur, Ming-Han Chou, Christopher R. Conner, Joel Grebel, Rhys G. Povey, Haoxiong Yan, David I. Schuster, and Andrew N. Cleland. Deterministic multi-qubit entanglement in a quantum network. Nature, 590(7847):571--575, Feb 2021.

Cited By

View all
  • (2024)Recompiling QAOA Circuits on Various Rotational DirectionsProceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques10.1145/3656019.3676899(309-324)Online publication date: 14-Oct-2024
  • (2024)NISQ Computers: A Path to Quantum SupremacyIEEE Access10.1109/ACCESS.2024.343233012(102941-102961)Online publication date: 2024
  • (2024)Distributed quantum computing: A surveyComputer Networks10.1016/j.comnet.2024.110672(110672)Online publication date: Aug-2024

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
ASPLOS '24: Proceedings of the 29th ACM International Conference on Architectural Support for Programming Languages and Operating Systems, Volume 2
April 2024
1299 pages
ISBN:9798400703850
DOI:10.1145/3620665
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

In-Cooperation

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 27 April 2024

Check for updates

Author Tags

  1. fault-tolerant quantum computing
  2. distributed quantum computing
  3. quantum error correction
  4. cryogenic computing
  5. single flux quantum (SFQ)

Qualifiers

  • Research-article

Conference

ASPLOS '24

Acceptance Rates

Overall Acceptance Rate 535 of 2,713 submissions, 20%

Upcoming Conference

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)831
  • Downloads (Last 6 weeks)155
Reflects downloads up to 09 Nov 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Recompiling QAOA Circuits on Various Rotational DirectionsProceedings of the 2024 International Conference on Parallel Architectures and Compilation Techniques10.1145/3656019.3676899(309-324)Online publication date: 14-Oct-2024
  • (2024)NISQ Computers: A Path to Quantum SupremacyIEEE Access10.1109/ACCESS.2024.343233012(102941-102961)Online publication date: 2024
  • (2024)Distributed quantum computing: A surveyComputer Networks10.1016/j.comnet.2024.110672(110672)Online publication date: Aug-2024

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Get Access

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media