Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Free access

A Vortex Particle-on-Mesh Method for Soap Film Simulation

Published: 19 July 2024 Publication History
  • Get Citation Alerts
  • Abstract

    This paper introduces a novel physically-based vortex fluid model for films, aimed at accurately simulating cascading vortical structures on deforming thin films. Central to our approach is a novel mechanism decomposing the film's tangential velocity into circulation and dilatation components. These components are then evolved using a hybrid particle-mesh method, enabling the effective reconstruction of three-dimensional tangential velocities and seamlessly integrating surfactant and thickness dynamics into a unified framework. By coupling with its normal component and surface-tension model, our method is particularly adept at depicting complex interactions between in-plane vortices and out-of-plane physical phenomena, such as gravity, surfactant dynamics, and solid boundary, leading to highly realistic simulations of complex thin-film dynamics, achieving an unprecedented level of vortical details and physical realism.

    Supplementary Material

    ZIP File (papers_389.zip)
    supplemental

    References

    [1]
    Bart Adams and Martin Wicke. 2009. Meshless Approximation Methods and Applications in Physics Based Modeling and Animation. In Eurographics (Tutorials). 213--239.
    [2]
    Ryoichi Ando, Nils Thuerey, and Chris Wojtan. 2015. A stream function solver for liquid simulations. ACM Trans. Graph. 34, 4 (2015), 1--9.
    [3]
    Ryoichi Ando, Nils Thürey, and Chris Wojtan. 2013. Highly adaptive liquid simulations on tetrahedral meshes. ACM Transactions on Graphics (TOG) 32, 4 (2013), 1--10.
    [4]
    Omri Azencot, Steffen Weißmann, Maks Ovsjanikov, Max Wardetzky, and Mirela BenChen. 2014. Functional Fluids on Surfaces. Computer Graphics Forum 33, 5 (2014), 237--246.
    [5]
    Alfred Barnat and Nancy Pollard. 2012. Smoke Sheets for Graph-Structured Vortex Filaments. In Proceedings of the 2012 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA '12). ACM, 10 pages.
    [6]
    Christopher Batty, Florence Bertails, and Robert Bridson. 2007. A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. 26, 3 (2007), 100--es.
    [7]
    Harsh Bhatia, Gregory Norgard, Valerio Pascucci, and Peer-Timo Bremer. 2013. The Helmholtz-Hodge Decomposition---A Survey. IEEE Transactions on Visualization and Computer Graphics 19, 8 (2013), 1386--1404.
    [8]
    Jeremiah U Brackbill, Douglas B Kothe, and Hans M Ruppel. 1988. FLIP: a low-dissipation, particle-in-cell method for fluid flow. Computer Physics Communications 48, 1 (1988), 25--38.
    [9]
    Tyson Brochu and Robert Bridson. 2009. Robust Topological Operations for Dynamic Explicit Surfaces. SIAM Journal on Scientific Computing 31, 4 (2009), 2472--2493.
    [10]
    Tyson Brochu, Todd Keeler, and Robert Bridson. 2012. Linear-time smoke animation with vortex sheet meshes. In Proceedings of the ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Lausanne, Switzerland) (SCA '12). Eurographics Association, Goslar, DEU, 87--95.
    [11]
    Jean-Marc Chomaz. 2001. The dynamics of a viscous soap film with soluble surfactant. Journal of Fluid Mechanics 442 (2001), 387--409.
    [12]
    Georges-Henri Cottet, Petros D Koumoutsakos, et al. 2000. Vortex methods: theory and practice. Vol. 8. Cambridge university press Cambridge.
    [13]
    Y Couder, JM Chomaz, and Marc Rabaud. 1989. On the hydrodynamics of soap films. Physica D: Nonlinear Phenomena 37, 1--3 (1989), 384--405.
    [14]
    Keenan Crane, Fernando de Goes, Mathieu Desbrun, and Peter Schröder. 2013. Digital geometry processing with discrete exterior calculus. In ACM SIGGRAPH 2013 Courses (Anaheim, California) (SIGGRAPH '13). Association for Computing Machinery, New York, NY, USA, 126 pages.
    [15]
    Fang Da, Christopher Batty, Chris Wojtan, and Eitan Grinspun. 2015. Double bubbles sans toil and trouble: discrete circulation-preserving vortex sheets for soap films and foams. ACM Trans. Graph. 34, 4 (jul 2015), 9 pages.
    [16]
    Y. Deng, M. Wang, X. Kong, S. Xiong, Z. Xian, and B. Zhu. 2022. A Moving Eulerian-Lagrangian Particle Method for Thin Film and Foam Simulation. ACM Trans. Graph. 41, 4 (2022).
    [17]
    Sharif Elcott, Yiying Tong, Eva Kanso, Peter Schröder, and Mathieu Desbrun. 2007. Stable, circulation-preserving, simplicial fluids. ACM Trans. Graph. 26, 1 (2007), 4--es.
    [18]
    Nick Foster and Dimitri Metaxas. 1996. Realistic animation of liquids. Graphical models and image processing 58, 5 (1996), 471--483.
    [19]
    Chuyuan Fu, Qi Guo, Theodore Gast, Chenfanfu Jiang, and Joseph Teran. 2017. A polynomial particle-in-cell method. ACM Trans. Graph. 36, 6 (2017), 1--12.
    [20]
    GameDev.net. 2013. Thin Film Interference for Computer Graphics. https://www.gamedev.net/tutorials/programming/graphics/thin-film-interference-for-computer-graphics-r2962/. Accessed: Date Accessed.
    [21]
    Gaël Guennebaud, Benoît Jacob, et al. 2010. Eigen v3. http://eigen.tuxfamily.org.
    [22]
    Francis H Harlow. 1962. The particle-in-cell method for numerical solution of problems in fluid dynamics. Technical Report. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
    [23]
    David J. Hill and Ronald D. Henderson. 2016. Efficient Fluid Simulation on the Surface of a Sphere. 35, 2 (apr 2016), 9 pages.
    [24]
    Weizhen Huang, Julian Iseringhausen, Tom Kneiphof, Ziyin Qu, Chenfanfu Jiang, and Matthias B Hullin. 2020. Chemomechanical simulation of soap film flow on spherical bubbles. ACM Trans. Graph. 39, 4 (2020), 41--1.
    [25]
    Sadashige Ishida, Peter Synak, Fumiya Narita, Toshiya Hachisuka, and Chris Wojtan. 2020. A model for soap film dynamics with evolving thickness. ACM Trans. Graph. 39, 4 (2020), 31--1.
    [26]
    Sadashige Ishida, Chris Wojtan, and Albert Chern. 2022. Hidden Degrees of Freedom in Implicit Vortex Filaments. ACM Trans. Graph. 41, 6 (nov 2022), 14 pages.
    [27]
    Sadashige Ishida, Masafumi Yamamoto, Ryoichi Ando, and Toshiya Hachisuka. 2017. A hyperbolic geometric flow for evolving films and foams. ACM Trans. Graph. 36, 6 (2017), 1--11.
    [28]
    Chenfanfu Jiang, Craig Schroeder, Andrew Selle, Joseph Teran, and Alexey Stomakhin. 2015. The affine particle-in-cell method. ACM Trans. Graph. 34, 4 (2015), 1--10.
    [29]
    Byungmoon Kim, Yingjie Liu, Ignacio Llamas, Xiangmin Jiao, and Jarek Rossignac. 2007. Simulation of bubbles in foam with the volume control method. In ACM SIGGRAPH 2007 Papers (San Diego, California) (SIGGRAPH '07). Association for Computing Machinery, New York, NY, USA, 98--es.
    [30]
    Masami Matsumoto and Shigeo Kawata. 1990. TRIPIC: Triangular-mesh particle-in-cell code. J. Comput. Phys. 87, 2 (1990), 488--493.
    [31]
    Alexander George McKenzie. 2007. HOLA: a high-order Lie advection of discrete differential forms with applications in Fluid Dynamics. Ph. D. Dissertation. California Institute of Technology.
    [32]
    Mark Meyer, Mathieu Desbrun, Peter Schröder, and Alan H. Barr. 2003. Discrete Differential-Geometry Operators for Triangulated 2-Manifolds. In Visualization and Mathematics III, Hans-Christian Hege and Konrad Polthier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 35--57.
    [33]
    François Morency, Héloïse Beaugendre, and Fédérico Gallizio. 2012. Aerodynamic force evaluation for ice shedding phenomenon using vortex in cell scheme, penalisation and level set approaches. International Journal of Computational Fluid Dynamics 26, 9--10 (2012), 435--450.
    [34]
    Sang Il Park and Myoung Jun Kim. 2005. Vortex fluid for gaseous phenomena. In Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Los Angeles, California) (SCA '05). Association for Computing Machinery, New York, NY, USA, 261--270.
    [35]
    Tobias Pfaff, Nils Thuerey, and Markus Gross. 2012. Lagrangian vortex sheets for animating fluids. ACM Trans. Graph. 31, 4 (jul 2012), 8 pages.
    [36]
    Tobias Pfaff, Nils Thuerey, Andrew Selle, and Markus Gross. 2009. Synthetic turbulence using artificial boundary layers. ACM Trans. Graph. 28, 5 (dec 2009), 1--10.
    [37]
    Ziyin Qu, Minchen Li, Fernando De Goes, and Chenfanfu Jiang. 2022. The power particle-in-cell method. ACM Transactions on Graphics 41, 4 (2022).
    [38]
    Ziyin Qu, Minchen Li, Yin Yang, Chenfanfu Jiang, and Fernando De Goes. 2023. Power Plastics: A Hybrid Lagrangian/Eulerian Solver for Mesoscale Inelastic Flows. ACM Trans. Graph. 42, 6 (dec 2023), 11 pages.
    [39]
    Robert I. Saye and James A. Sethian. 2013. Multiscale Modeling of Membrane Rearrangement, Drainage, and Rupture in Evolving Foams. Science 340, 6133 (2013), 720--724.
    [40]
    Andrew Selle, Nick Rasmussen, and Ronald Fedkiw. 2005. A vortex particle method for smoke, water and explosions. In ACM SIGGRAPH 2005 Papers (Los Angeles, California) (SIGGRAPH '05). Association for Computing Machinery, New York, NY, USA, 910--914.
    [41]
    Evgenia Shabalina, Antoine Bérut, Mathilde Cavelier, Arnaud Saint-Jalmes, and Isabelle Cantat. 2019. Rayleigh-Taylor-like instability in a foam film. Phys. Rev. Fluids 4 (Dec 2019), 124001. Issue 12.
    [42]
    Lin Shi and Yizhou Yu. 2004. Inviscid and incompressible fluid simulation on triangle meshes. Computer Animation and Virtual Worlds 15, 3--4 (2004), 173--181.
    [43]
    SideFX. 2023. Houdini (Version 19.5). https://www.sidefx.com. [Computer software].
    [44]
    Jos Stam. 1999. Stable fluids. In Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH '99). ACM Press/Addison-Wesley Publishing Co., USA, 121--128.
    [45]
    Mengdi Wang, Yitong Deng, Xiangxin Kong, Aditya H. Prasad, Shiying Xiong, and Bo Zhu. 2021. Thin-film smoothed particle hydrodynamics fluid. ACM Trans. Graph. 40, 4 (jul 2021), 16 pages.
    [46]
    Stephanie Wang, Mohammad Sina Nabizadeh, and Albert Chern. 2023. Exterior Calculus in Graphics: Course Notes for a SIGGRAPH 2023 Course. In ACM SIGGRAPH 2023 Courses (, Los Angeles, California,) (SIGGRAPH '23). Association for Computing Machinery, New York, NY, USA, 126 pages.
    [47]
    Joe Warren, Scott Schaefer, Anil N Hirani, and Mathieu Desbrun. 2007. Barycentric coordinates for convex sets. Advances in computational mathematics 27 (2007), 319--338.
    [48]
    Steffen Weißmann and Ulrich Pinkall. 2010. Filament-based smoke with vortex shedding and variational reconnection. ACM Trans. Graph. 29, 4 (jul 2010), 12 pages.
    [49]
    S. Xiong, R. Tao, Y. Zhang, F. Feng, and B. Zhu. 2021. Incompressible flow simulation on vortex segment clouds. ACM Trans. Graph. 40, 4 (2021).
    [50]
    Hang Yin, Mohammad Sina Nabizadeh, Baichuan Wu, Stephanie Wang, and Albert Chern. 2023. Fluid Cohomology. ACM Trans. Graph. 42, 4 (jul 2023), 25 pages.
    [51]
    Xinxin Zhang and Robert Bridson. 2014. A PPPM fast summation method for fluids and beyond. ACM Trans. Graph. 33, 6 (nov 2014), 11 pages.
    [52]
    Wen Zheng, Jun-Hai Yong, and Jean-Claude Paul. 2006. Simulation of bubbles. In Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (Vienna, Austria) (SCA '06). Eurographics Association, Goslar, DEU, 325--333.
    [53]
    Bo Zhu, Ed Quigley, Matthew Cong, Justin Solomon, and Ronald Fedkiw. 2014. Codimensional surface tension flow on simplicial complexes. ACM Trans. Graph. 33, 4 (jul 2014), 11 pages.
    [54]
    Yongning Zhu and Robert Bridson. 2005. Animating sand as a fluid. ACM Trans. Graph. 24, 3 (jul 2005), 965--972.

    Index Terms

    1. A Vortex Particle-on-Mesh Method for Soap Film Simulation

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Transactions on Graphics
      ACM Transactions on Graphics  Volume 43, Issue 4
      July 2024
      1775 pages
      ISSN:0730-0301
      EISSN:1557-7368
      DOI:10.1145/3675116
      Issue’s Table of Contents
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 19 July 2024
      Published in TOG Volume 43, Issue 4

      Check for updates

      Author Tags

      1. fluid simulation
      2. thin film simulation
      3. vortex particle method

      Qualifiers

      • Research-article

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • 0
        Total Citations
      • 33
        Total Downloads
      • Downloads (Last 12 months)33
      • Downloads (Last 6 weeks)33
      Reflects downloads up to 27 Jul 2024

      Other Metrics

      Citations

      View Options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Get Access

      Login options

      Full Access

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media