Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article
Open access

Design and fabrication of materials with desired deformation behavior

Published: 26 July 2010 Publication History

Abstract

This paper introduces a data-driven process for designing and fabricating materials with desired deformation behavior. Our process starts with measuring deformation properties of base materials. For each base material we acquire a set of example deformations, and we represent the material as a non-linear stress-strain relationship in a finite-element model. We have validated our material measurement process by comparing simulations of arbitrary stacks of base materials with measured deformations of fabricated material stacks. After material measurement, our process continues with designing stacked layers of base materials. We introduce an optimization process that finds the best combination of stacked layers that meets a user's criteria specified by example deformations. Our algorithm employs a number of strategies to prune poor solutions from the combinatorial search space. We demonstrate the complete process by designing and fabricating objects with complex heterogeneous materials using modern multi-material 3D printers.

Supplementary Material

Supplemental material. (063.zip)

References

[1]
Barbiĉ, J., and James, D. 2005. Real-time subspace integration for St. Venant-Kirchhoff deformable models. ACM Trans. Graph. 24, 3 (Aug.), 982--990. 2
[2]
Bathe, K. J. 1995. Finite Element Procedures. Prentice Hall. 3
[3]
Becker, M., and Teschner, M. 2007. Robust and efficient estimation of elasticity parameters using the linear finite element method. In SimVis, 15--28. 2
[4]
Bendsoe, M. P., and Sigmund, O. 2003. Topology Optimization. Springer Berlin. 2
[5]
Bickel, B., Bächer, M., Otaduy, M. A., Matusik, W., Pfister, H., and Gross, M. 2009. Capture and modeling of non-linear heterogeneous soft tissue. ACM Trans. Graph. 28, 3 (July), 89:1--89:9. 2, 3, 3, 3, 4
[6]
DiLorenzo, P. C., Zordan, V. B., and Sanders, B. L. 2008. Laughing out loud: Control for modeling anatomically inspired laughter using audio. ACM Trans. Graph. 27, 5 (Dec.), 125:1--125:8. 2
[7]
Hiller, J., and Lipson, H. 2009. Design and analysis of digital materials for physical 3d voxel printing. Rapid Prototyping Journal 15, 137--149. 2
[8]
James, D. L., and Pai, D. K. 1999. Artdefo - accurate real time deformable objects. In Proc. of SIGGRAPH 99, Computer Graphics Proc., 65--72. 2
[9]
Kajberg, J., and Lindkvist, G. 2004. Characterisation of materials subjected to large strains by inverse modelling based on in-plane displacement fields. IJSS 41, 13, 3439--3459. 2
[10]
Kauer, M., Vuskovic, V., Dual, J., Szekely, G., and Bajka, M. 2002. Inverse finite element characterization of soft tissues. Medical Image Analysis 6, 3, 257--287. 2
[11]
Kharevych, L., Mullen, P., Owhadi, H., and Desbrun, M. 2009. Numerical coarsening of inhomogeneous elastic materials. ACM Trans. Graph. 28, 3 (July), 51:1--51:8. 1, 2
[12]
Kicinger, R., Arciszewski, T., and Jong, K. D. 2005. Evolutionary computation and structural design: A survey of the state-of-the-art. Comput. Struct. 83, 23--24, 1943--1978. 2
[13]
Koch, R. M., Gross, M. H., Carls, F. R., von Büren, D. F., Fankhauser, G., and Parish, Y. 1996. Simulating facial surgery using finite element methods. In Proc. of SIGGRAPH 96, Computer Graphics Proc., 421--428. 2
[14]
Land, A. H., and Doig, A. G. 1960. An automatic method of solving discrete programming problems. Econometrica 28, 3, 497--520. 5.2
[15]
Lang, J., Pai, D. K., and Woodham, R. J. 2002. Acquisition of elastic models for interactive simulation. IJRR 21, 8, 713--733. 2
[16]
Lee, S.-H., and Terzopoulos, D. 2006. Heads up!: biome-chanical modeling and neuromuscular control of the neck. ACM Trans. Graph 25, 3 (July), 1188--1198. 2
[17]
Lee, S.-H., Sifakis, E., and Terzopoulos, D. 2009. Comprehensive biomechanical modeling and simulation of the upper body. ACM Trans. Graph. 28, 4 (Aug.), 99:1--99:17. 2
[18]
Lund, E., and Stegmann, J. 2005. On structural optimization of composite shell structures using a discrete constitutive parameterization. Wind Energy 8, 109--124. 5.2
[19]
Magnenat-Thalmann, N., Kalra, P., Lévêque, J. L., Bazin, R., Batisse, D., and Queleux, B. 2002. A computational skin model: fold and wrinkle formation. IEEE Trans. on Information Technology in Biomedicine 6, 4, 317--323. 2
[20]
Mikolajczyk, K., and Schmid, C. 2004. Scale & affine invariant interest point detectors. IJCV 60, 1, 63--86. 6
[21]
Mitani, J., and Suzuki, H. 2004. Making papercraft toys from meshes using strip-based approximate unfolding. ACM Trans. Graph. 23, 3 (Aug.), 259--263. 1
[22]
Mori, Y., and Igarashi, T. 2007. Plushie: An interactive design system for plush toys. ACM Trans. Graph. 26, 3 (July), 45:1--45:8. 1
[23]
Müller, M., and Gross, M. H. 2004. Interactive virtual materials. In Graphics Interface 2004, 239--246. 3
[24]
Nealen, A., Mller, M., Keiser, R., Boxerman, E., and Carlson, M. 2006. Physically based deformable models in computer graphics. Computer Graphics Forum 25, 4 (Dec.), 809--836. 2
[25]
Nesme, M., Kry, P. G., Jeřábková, L., and Faure, F. 2009. Preserving topology and elasticity for embedded deformable models. ACM Trans. Graph. 28, 3 (July), 52:1--52:9. 2
[26]
Neumaier, A., and Pownuk, A. 2007. Linear systems with large uncertainties with applications to truss structures. Reliable Computing 13, 149--172. 5.2
[27]
OBJET. Connex500 Multi-Material 3D Printing System. http://www.objet.com/3D-Printer/Connex500/.1
[28]
O'Brien, J. F., and Hodgins, J. K. 1999. Graphical modeling and animation of brittle fracture. In Proc. of SIGGRAPH 99, Computer Graphics Proc., 137--146. 2
[29]
Ogden, R. W. 1997. Non-Linear Elastic Deformations. Courier Dover Publications. 2
[30]
Okabe, H., Imaoka, H., Tomiha, T., and Niwaya, H. 1992. Three dimensional apparel cad system. In Computer Graphics (Proc. of SIGGRAPH 92), 105--110. 1
[31]
Pai, D. K., van den Doel, K., James, D. L., Lang, J., Lloyd, J. E., Richmond, J. L., and Yau, S. H. 2001. Scanning physical interaction behavior of 3d objects. In Proc. of ACM SIGGRAPH 2001, Computer Graphics Proc., 87--96. 2
[32]
Rebonato, R., and Jäckel, P. 1999. The most general methodology to create a valid correlation matrix for risk management and option pricing purposes. Tech. rep., Quantitative Research Centre, NatWest Group. 4
[33]
Schnur, D. S., and Zabaras, N. 1992. An inverse method for determining elastic material properties and a material interface. International Journal for Numerical Methods in Engineering 33, 10, 2039--2057. 2
[34]
Schoner, J. L., Lang, J., and Seidel, H.-P. 2004. Measurement-based interactive simulation of viscoelastic solids. Computer Graphics Forum 23, 3 (Sept.), 547--556. 2
[35]
Sifakis, E., Neverov, I., and Fedkiw, R. 2005. Automatic determination of facial muscle activations from sparse motion capture marker data. ACM Trans. Graph 24, 3 (Aug.), 417--425. 2
[36]
Sueda, S., Kaufman, A., and Pai, D. K. 2008. Musculotendon simulation for hand animation. ACM Trans. Graph. 27, 3 (Aug.), 83:1--83:8. 2
[37]
Svoboda, T., Martinec, D., and Pajdla, T. 2005. A convenient multi-camera self-calibration for virtual environments. PRESENCE: Teleoperators and Virtual Environments 14, 4 (August), 407--422. 6
[38]
Teran, J., Sifakis, E., Blemker, S. S., Ng-Thow-Hing, V., Lau, C., and Fedkiw, R. 2005. Creating and simulating skeletal muscle from the visible human data set. IEEE TVCG 11, 3 (May/June), 317--328. 2
[39]
Terzopoulos, D., Platt, J., Barr, A., and Fleischer, K. 1987. Elastically deformable models. In Computer Graphics (Proc. of SIGGRAPH 87), 205--214. 2
[40]
Terzopoulus, D., and Waters, K. 1993. Analysis and synthesis of facial image sequences using physical and anatomical models. IEEE Trans. on PAMI 14, 569--579. 2
[41]
Weyrich, T., Peers, P., Matusik, W., and Rusinkiewicz, S. 2009. Fabricating microgeometry for custom surface reflectance. ACM Trans. Graph. 28, 3 (Aug.). 1
[42]
Zohdi, T. I., and Wriggers, P. 2004. Introduction to Computational Micromechanics. Springer-Verlag New York, Inc. 1
[43]
Zordan, V. B., Celly, B., Chiu, B., and DiLorenzo, P. C. 2004. Breathe easy: model and control of simulated respiration for animation. In 2004 ACM SIGGRAPH / Eurographics SCA, 29--37. 2

Cited By

View all
  • (2024)FlexScale: Modeling and Characterization of Flexible Scaled SheetsACM Transactions on Graphics10.1145/365817543:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Practice-driven Software Development: A Collaborative Method for Digital Fabrication Systems Research in a Residency ProgramProceedings of the 2024 ACM Designing Interactive Systems Conference10.1145/3643834.3661522(1192-1217)Online publication date: 1-Jul-2024
  • (2024)Cut‐Cell Microstructures for Two‐scale Structural OptimizationComputer Graphics Forum10.1111/cgf.15139Online publication date: 31-Jul-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Transactions on Graphics
ACM Transactions on Graphics  Volume 29, Issue 4
July 2010
942 pages
ISSN:0730-0301
EISSN:1557-7368
DOI:10.1145/1778765
Issue’s Table of Contents
  • cover image ACM Overlay Books
    Seminal Graphics Papers: Pushing the Boundaries, Volume 2
    August 2023
    893 pages
    ISBN:9798400708978
    DOI:10.1145/3596711
    • Editor:
    • Mary C. Whitton
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 26 July 2010
Published in TOG Volume 29, Issue 4

Permissions

Request permissions for this article.

Check for updates

Badges

  • Seminal Paper

Author Tags

  1. deformable objects
  2. fabrication
  3. goal-based material design

Qualifiers

  • Research-article

Funding Sources

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)519
  • Downloads (Last 6 weeks)55
Reflects downloads up to 15 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2024)FlexScale: Modeling and Characterization of Flexible Scaled SheetsACM Transactions on Graphics10.1145/365817543:4(1-14)Online publication date: 19-Jul-2024
  • (2024)Practice-driven Software Development: A Collaborative Method for Digital Fabrication Systems Research in a Residency ProgramProceedings of the 2024 ACM Designing Interactive Systems Conference10.1145/3643834.3661522(1192-1217)Online publication date: 1-Jul-2024
  • (2024)Cut‐Cell Microstructures for Two‐scale Structural OptimizationComputer Graphics Forum10.1111/cgf.15139Online publication date: 31-Jul-2024
  • (2024)Computational design of custom-fit PAP masksComputers and Graphics10.1016/j.cag.2024.103998122:COnline publication date: 1-Aug-2024
  • (2024)Procedural generation of geometric patterns for thin shell fabricationComputers and Graphics10.1016/j.cag.2024.103958122:COnline publication date: 1-Aug-2024
  • (2024)Optimizing heterogeneous elastic material distributions on 3D modelsComputer-Aided Design10.1016/j.cad.2024.103748175(103748)Online publication date: Oct-2024
  • (2024)Towards a Multi-view and Multi-representation CAD Models System for Computational Design of Multi-material 4D Printed StructuresProduct Lifecycle Management. Leveraging Digital Twins, Circular Economy, and Knowledge Management for Sustainable Innovation10.1007/978-3-031-62578-7_27(287-297)Online publication date: 28-Jun-2024
  • (2023)Research on Interdisciplinary Design Thinking and Methods Based on Programmable Mechanical MetamaterialsBuildings10.3390/buildings1304093313:4(933)Online publication date: 31-Mar-2023
  • (2023)MetaReality: enhancing tactile experiences using actuated 3D-printed metamaterials in Virtual RealityFrontiers in Virtual Reality10.3389/frvir.2023.11723814Online publication date: 28-Jun-2023
  • (2023)LattiSense: A 3D-Printable Resistive Deformation Sensor with Lattice StructuresProceedings of the 8th ACM Symposium on Computational Fabrication10.1145/3623263.3623361(1-14)Online publication date: 8-Oct-2023
  • Show More Cited By

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Full Access

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media