Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
skip to main content
research-article

Dynamic active probing of helpdesk databases

Published: 01 August 2008 Publication History

Abstract

Helpdesk databases are used to store past interactions between customers and companies to improve customer service quality. One common scenario of using helpdesk database is to find whether recommendations exist given a new problem from a customer. However, customers often provide incomplete or even inaccurate information. Manually preparing a list of clarification questions does not work for large databases. This paper investigates the problem of automatic generation of a minimal number of questions to reach an appropriate recommendation. This paper proposes a novel dynamic active probing method. Compared to other alternatives such as decision tree and case-based reasoning, this method has two distinctive features. First, it actively probe the customer to get useful information to reach the recommendation, and the information provided by customer will be immediately used by the method to dynamically generate the next questions to probe. This feature ensures that all available information from the customer is used. Second, this method is based on a probabilistic model, and uses a data augmentation method which avoids overfitting when estimating the probabilities in the model. This feature ensures that the method is robust to databases that are incomplete or contain errors. Experimental results verify the effectiveness of our approach.

References

[1]
C. C. Aggarwal and P. S. Yu. The igrid index: reversing the dimensionality curse for similarity indexing in high dimensional space. In SIGKDD, pages 119--129, 2000.
[2]
R. Agrawal, R. Rantzau, and E. Terzi. Context-sensitive ranking. In SIGMOD, pages 383--394, 2006.
[3]
S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis. Automated ranking of database query results. In CIDR, 2003.
[4]
D. W. Aha, D. Mcsherry, and Q. Yang. Advances in conversational case-based reasoning. The Knowledge Engineering Review, 20(3):247--254, 2006.
[5]
J. Allen. Natural Language Understanding. Addison Wesley, 1994.
[6]
K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is nearest neighbor meaningful? In ICDT, 1999.
[7]
S. Börzsönyi, D. Kossmann, and K. Stocker. The skyline operator. In ICDE, pages 421--430, 2001.
[8]
L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth and Brooks/Cole, Monterey, CA, 1984.
[9]
D. Bridge, M. H. Goker, L. Mcginty, and B. Smyth. Case-based recommender systems. The Knowledge Engineering Review. 20(3):315--320, 2006.
[10]
M. Brodie, I. Rish, and S. Ma. Intelligent probing: a cost-effective approach to fault diagnosis in computer networks. IBM System Journal, 41(3), 2002.
[11]
C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of web information extraction systems. IEEE Transactions on Knowledge and Data Engineering, 18(10):1411--1428, 2006.
[12]
S. Chaudhuri, G. Das, V. Hristidis, and G. Weikum. Probabilistic ranking of database query results. In VLDB, pages 888--899, 2004.
[13]
S. Chaudhuri and L. Gravano. Evaluating top-k selection queries. In M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L. Brodie, editors, VLDB, pages 397--410. Morgan Kaufmann, 1999.
[14]
C. Cieri, D. Graff, and M. Liberman. The TDT-2 text and speech corpus, 1999.
[15]
D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active learning with statistical models. In Advances in Neural Information Processing Systems, pages 705--712, 1995.
[16]
P. Cunningham and S. B. A comparison of Model-based and incremental case-based approaches to electronic fault diagnosis. Technical Report TCD-CS-94-21, 1994.
[17]
T. Darrell, P. Indyk, and G. Shakhnarovich. Nearest Neighbor Methods in Learning and Vision: Theory and Practice. MIT Press, 2006.
[18]
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Proceedings of the Royal Statistical Society, pages 1--38, 1976.
[19]
L. Devroye and G. Lugosi. Combinatorial Methods in Density Estimation. Springer, 2001.
[20]
M. Doyle and P. Cunningham. A dynamic approach to reducing dialog in on-line decision guides. In EWCBR, pages 49--60, 2000.
[21]
J. English, M. Hearst, R. Sinha, K. Swearingen, and K.-P. Yee. Hierarchical faceted metadata in site search interfaces. In CHI '02, pages 628--639, 2002.
[22]
R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware. In PODS, 2001.
[23]
M. Franz, T. Ward, J. S. McCarley, and W.-J. Zhu. Unsupervised and supervised clustering for topic tracking. In SIGIR, pages 310--317, 2001.
[24]
Z. Ghahramani and M. I. Jordan. Supervised learning from incomplete data via an EM approach. In Advances in Neural Information Processing Systems, pages 120--127, 1994.
[25]
R. Grishman. Information extraction: Techniques and challenges. In SCIE '97: International Summer School on Information Extraction, pages 10--27, 1997. Springer-Verlag.
[26]
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, Prediction. Springer, 2001.
[27]
H. V. Jagadish, B. C. Ooi, K.-L. Tan, C. Yu, and R. Z. 0003. idistance: An adaptive b+-tree based indexing method for nearest neighbor search. ACM Trans. Database Syst., 30(2):364--397, 2005.
[28]
M. Jayapandian and H. V. Jagadish. Automating the design and construction of query forms. In ICDE, page 125, 2006.
[29]
A. A. Kamis and E. A. Stohr. Parametric search engines: what makes them effective when shopping online for differentiated products? Inf. Manage., 43(7):904--918, 2006.
[30]
R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1--2):273--324, 1997.
[31]
D. Kossmann, F. Ramsak, and S. Rost. Shooting stars in the sky: An online algorithm for skyline queries. In VLDB, pages 275--286, 2002.
[32]
G. Kumaran and J. Allan. Simple questions to improve pseudo-relevance feedback results. In SIGIR, pages 661--662, 2006.
[33]
P. Langley. Selection of relevant features in machine learning. In AAAI Fall Symposium on Relevance, pages 140--144, 1994.
[34]
N. Mirzadeh, F. Ricci, and M. Bansal. Feature selection methods for conversational recommender systems. In Proceedings of the 2005 IEEE International Conference on e-Technology, e-Commerce and e-Service, pages 772--777, 2005.
[35]
National Retail Federation. Importance of customer service reinforced in nrf foundation/american express study. http://www.nrf.com/content/press/release2004/custserv1104.htm.
[36]
T. Nguyen, M. Czerwinski, and D. Lee. COMPAQ QuickSource: Providing the consumer with the power of artificial intelligence. In IAAI '93, pages 142--151, 1993.
[37]
J. R. Quinlan. Introduction of decision trees. Machine Learning, (1):81--106, 1986.
[38]
D. B. Rubin. Multiple Imputation for Nonresponse in surveys. Wiley, New York, 1987.
[39]
S. Schmitt. simvar: A similarity-influenced question selection criterion for e-sales dialogs. Artificial Intelligence Review, 18:195--221, 2002.
[40]
H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In Computational Learning Theory, pages 287--294, 1992.
[41]
K. Sparck Jones. Automatic Keyword Classification for Information Retrieval. Butterworth, London, 1971.
[42]
M. A. Tanner and W. H. Wong. The calculation of posterior distributions by data augmentation (with discussion). Journal of the American Statistical Association, 82:528--550, 1987.
[43]
P. Wu, Y. Sismanis, and B. Reinwald. Towards keyword-driven analytical processing. In SIGMOD, pages 617--628, 2007.
[44]
J. Xu and W. B. Croft. Query expansion using local and global document analysis. In SIGIR, pages 4--11, 1996.
[45]
K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image search and browsing. In CHI '03, pages 401--408, 2003.

Cited By

View all
  • (2016)CSMACM Transactions on Intelligent Systems and Technology10.1145/28947598:1(1-25)Online publication date: 25-Jul-2016

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Proceedings of the VLDB Endowment
Proceedings of the VLDB Endowment  Volume 1, Issue 1
August 2008
1216 pages

Publisher

VLDB Endowment

Publication History

Published: 01 August 2008
Published in PVLDB Volume 1, Issue 1

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)4
  • Downloads (Last 6 weeks)0
Reflects downloads up to 13 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2016)CSMACM Transactions on Intelligent Systems and Technology10.1145/28947598:1(1-25)Online publication date: 25-Jul-2016

View Options

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media