Yalagala BP, Dahiya AS, Dahiya R. ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics. Opto-Electron Adv 6, 220020 (2023). doi: 10.29026/oea.2023.220020
Citation: Yalagala BP, Dahiya AS, Dahiya R. ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics. Opto-Electron Adv 6, 220020 (2023). doi: 10.29026/oea.2023.220020

Article Open Access

ZnO nanowires based degradable high-performance photodetectors for eco-friendly green electronics

More Information
  • Disposable devices designed for single and/or multiple reliable measurements over a short duration have attracted considerable interest recently. However, these devices often use non-recyclable and non-biodegradable materials and wasteful fabrication methods. Herein, we present ZnO nanowires (NWs) based degradable high-performance UV photodetectors (PDs) on flexible chitosan substrate. Systematic investigations reveal the presented device exhibits excellent photo response, including high responsivity (55 A/W), superior specific detectivity (4x1014 jones), and the highest gain (8.5x1010) among the reported state of the art biodegradable PDs. Further, the presented PDs display excellent mechanical flexibility under wide range of bending conditions and thermal stability in the measured temperature range (5–50 °C). The biodegradability studies performed on the device, in both deionized (DI) water (pH≈6) and PBS solution (pH=7.4), show fast degradability in DI water (20 mins) as compared to PBS (48 h). These results show the potential the presented approach holds for green and cost-effective fabrication of wearable, and disposable sensing systems with reduced adverse environmental impact.
  • 加载中
  • [1] Dahiya AS, Thireau J, Boudaden J, Lal S, Gulzar U et al. Review—energy autonomous wearable sensors for smart healthcare: a review. J Electrochem Soc 167, 037516 (2019).

    Google Scholar

    [2] Núñez CG, Navaraj WT, Polat EO, Dahiya R. Energy-autonomous, flexible, and transparent tactile skin. Adv Funct Mater 27, 1606287 (2017). doi: 10.1002/adfm.201606287

    CrossRef Google Scholar

    [3] Iqbal SMA, Mahgoub I, Du E, Leavitt MA, Asghar W. Advances in healthcare wearable devices. npj Flex Electron 5, 9 (2021). doi: 10.1038/s41528-021-00107-x

    CrossRef Google Scholar

    [4] Ozioko O, Dahiya R. Smart tactile gloves for haptic interaction, communication, and rehabilitation. Adv Intell Syst 4, 2100091 (2022). doi: 10.1002/aisy.202100091

    CrossRef Google Scholar

    [5] Ozioko O, Karipoth P, Escobedo P, Ntagios M, Pullanchiyodan A et al. SensAct: the soft and squishy tactile sensor with integrated flexible actuator. Adv Intell Syst 3, 1900145 (2021). doi: 10.1002/aisy.201900145

    CrossRef Google Scholar

    [6] Karipoth P, Christou A, Pullanchiyodan A, Dahiya R. Bioinspired inchworm‐ and earthworm‐like soft robots with intrinsic strain sensing. Adv Intell Syst 4, 2100092 (2022). doi: 10.1002/aisy.202100092

    CrossRef Google Scholar

    [7] Zhang Y, Peng MF, Liu YN, Zhang TT, Zhu QQ et al. Flexible self-powered real-time ultraviolet photodetector by coupling triboelectric and photoelectric effects. ACS Appl Mater Interfaces 12, 19384–19392 (2020). doi: 10.1021/acsami.9b22572

    CrossRef Google Scholar

    [8] Nikbakhtnasrabadi F, El Matbouly H, Ntagios M, Dahiya R. Textile-based stretchable microstrip antenna with intrinsic strain sensing. ACS Appl Electron Mater 3, 2233–2246 (2021). doi: 10.1021/acsaelm.1c00179

    CrossRef Google Scholar

    [9] Bhattacharjee M, Nikbakhtnasrabadi F, Dahiya R. Printed chipless antenna as flexible temperature sensor. IEEE Internet Things J 8, 5101–5110 (2021). doi: 10.1109/JIOT.2021.3051467

    CrossRef Google Scholar

    [10] Dincer C, Bruch R, Costa-Rama E, Fernández-Abedul MT, Merkoçi A et al. Disposable sensors in diagnostics, food, and environmental monitoring. Adv Mater 31, 1806739 (2019).

    Google Scholar

    [11] Escobedo P, Bhattacharjee M, Nikbakhtnasrabadi F, Dahiya R. Flexible strain and temperature sensing NFC tag for smart food packaging applications. IEEE Sens J 21, 26406–26414 (2021). doi: 10.1109/JSEN.2021.3100876

    CrossRef Google Scholar

    [12] Escobedo P, Bhattacharjee M, Nikbakhtnasrabadi F, Dahiya R. Smart bandage with wireless strain and temperature sensors and batteryless NFC tag. IEEE Internet Things J 8, 5093–5100 (2021). doi: 10.1109/JIOT.2020.3048282

    CrossRef Google Scholar

    [13] Duarte K, Justino CIL, Freitas AC, Gomes AMP, Duarte AC et al. Disposable sensors for environmental monitoring of lead, cadmium and mercury. TrAC Trends Anal Chem 64, 183–190 (2015). doi: 10.1016/j.trac.2014.07.006

    CrossRef Google Scholar

    [14] Kafi A, Paul A, Vilouras A, Dahiya R. Mesoporous chitosan based conformable and resorbable biostrip for dopamine detection. Biosens Bioelectron 147, 111781 (2020). doi: 10.1016/j.bios.2019.111781

    CrossRef Google Scholar

    [15] Ha M, Lim S, Ko H. Wearable and flexible sensors for user-interactive health-monitoring devices. J Mater Chem B 6, 4043–4064 (2018). doi: 10.1039/C8TB01063C

    CrossRef Google Scholar

    [16] Andeobu L, Wibowo S, Grandhi S. An assessment of e-waste generation and environmental management of selected countries in Africa, Europe and North America: a systematic review. Sci Total Environ 792, 148078 (2021). doi: 10.1016/j.scitotenv.2021.148078

    CrossRef Google Scholar

    [17] Tak BR, Yang MM, Lai YH, Chu YH, Alexe M et al. Photovoltaic and flexible deep ultraviolet wavelength detector based on novel β-Ga2O3/muscovite heteroepitaxy. Sci Rep 10, 16098 (2020). doi: 10.1038/s41598-020-73112-1

    CrossRef Google Scholar

    [18] Jeon CW, Lee SS, Park IK. Flexible visible-blind ultraviolet photodetectors based on ZnAl-layered double hydroxide nanosheet scroll. ACS Appl Mater Interfaces 11, 35138–35145 (2019). doi: 10.1021/acsami.9b12082

    CrossRef Google Scholar

    [19] Kumaresan Y, Min GB, Dahiya AS, Ejaz A, Shakthivel D et al. Kirigami and mogul-patterned ultra-stretchable high-performance ZnO nanowires-based photodetector. Adv Mater Technol 7, 2100804 (2022). doi: 10.1002/admt.202100804

    CrossRef Google Scholar

    [20] Núñez CG, Vilouras A, Navaraj WT, Liu FY, Dahiya R. ZnO nanowires-based flexible UV photodetector system for wearable dosimetry. IEEE Sens J 18, 7881–7888 (2018). doi: 10.1109/JSEN.2018.2853762

    CrossRef Google Scholar

    [21] Ali GM, Chakrabarti P. ZnO-based interdigitated MSM and MISIM ultraviolet photodetectors. J Phys D Appl Phys 43, 415103 (2010). doi: 10.1088/0022-3727/43/41/415103

    CrossRef Google Scholar

    [22] Christou A, Liu FY, Dahiya R. Development of a highly controlled system for large-area, directional printing of quasi-1D nanomaterials. Microsyst Nanoeng 7, 82 (2021). doi: 10.1038/s41378-021-00314-6

    CrossRef Google Scholar

    [23] Kumar M, Park JY, Seo H. High-performance and self-powered alternating current ultraviolet photodetector for digital communication. ACS Appl Mater Interfaces 13, 12241–12249 (2021). doi: 10.1021/acsami.1c00698

    CrossRef Google Scholar

    [24] Qiu MJ, Sun P, Liu YJ, Huang QT, Zhao CX et al. Visualized UV photodetectors based on prussian blue/TiO2 for smart irradiation monitoring application. Adv Mater Technol 3, 1700288 (2018). doi: 10.1002/admt.201700288

    CrossRef Google Scholar

    [25] Moehrle M, Dennenmoser B, Garbe C. Continuous long-term monitoring of UV radiation in professional mountain guides reveals extremely high exposure. Int J Cancer 103, 775–778 (2003). doi: 10.1002/ijc.10884

    CrossRef Google Scholar

    [26] Young SJ, Liu YH, Shiblee MDNI, Ahmed K, Lai LT et al. Flexible ultraviolet photodetectors based on one-dimensional gallium-doped zinc oxide nanostructures. ACS Appl Electron Mater 2, 3522–3529 (2020). doi: 10.1021/acsaelm.0c00556

    CrossRef Google Scholar

    [27] Chen LB, Xue F, Li XH, Huang X, Wang LF et al. Strain-gated field effect transistor of a MoS2-ZnO 2D-1D hybrid structure. ACS Nano 10, 1546–1551 (2016). doi: 10.1021/acsnano.5b07121

    CrossRef Google Scholar

    [28] Liu X, Gu LL, Zhang QP, Wu JY, Long YZ et al. All-printable band-edge modulated ZnO nanowire photodetectors with ultra-high detectivity. Nat Commun 5, 4007 (2014). doi: 10.1038/ncomms5007

    CrossRef Google Scholar

    [29] Shakthivel D, Dahiya AS, Mukherjee R, Dahiya R. Inorganic semiconducting nanowires for green energy solutions. Curr Opin Chem Eng 34, 100753 (2021). doi: 10.1016/j.coche.2021.100753

    CrossRef Google Scholar

    [30] Shakthivel D, Ahmad M, Alenezi MR, Dahiya R, Silva SRP. 1D Semiconducting Nanostructures for Flexible and Large-Area Electronics: Growth Mechanisms and Suitability (Cambridge University Press, Cambridge, 2019).

    Google Scholar

    [31] Oshman C, Opoku C, Dahiya AS, Alquier D, Camara N et al. Measurement of spurious voltages in ZnO piezoelectric nanogenerators. J Microelectromech Syst 25, 533–541 (2016). doi: 10.1109/JMEMS.2016.2538206

    CrossRef Google Scholar

    [32] Sarkar L, Yelagala BP, Singh SG, Vanjari SRK. Electrodeposition as a facile way for the preparation of piezoelectric ultrathin silk film–based flexible nanogenerators. Int J Energy Res 46, 3443–3457 (2022). doi: 10.1002/er.7393

    CrossRef Google Scholar

    [33] La Mattina AA, Mariani S, Barillaro G. Bioresorbable materials on the rise: from electronic components and physical sensors to in vivo monitoring systems. Adv Sci (Weinh) 7, 1902872 (2020). doi: 10.1002/advs.201902872

    CrossRef Google Scholar

    [34] Hosseini ES, Dervin S, Ganguly P, Dahiya R. Biodegradable materials for sustainable health monitoring devices. ACS Appl Bio Mater 4, 163–194 (2021). doi: 10.1021/acsabm.0c01139

    CrossRef Google Scholar

    [35] Gunapu DVSK, Prasad YB, Mudigunda VS, Yasam P, Rengan AK et al. Development of robust, ultra-smooth, flexible and transparent regenerated silk composite films for bio-integrated electronic device applications. Int J Biol Macromol 176, 498–509 (2021). doi: 10.1016/j.ijbiomac.2021.02.051

    CrossRef Google Scholar

    [36] Bhattacharjee M, Middya S, Escobedo P, Chaudhuri J, Bandyopadhyay D et al. Microdroplet based disposable sensor patch for detection of α-amylase in human blood serum. Biosens Bioelectron 165, 112333 (2020). doi: 10.1016/j.bios.2020.112333

    CrossRef Google Scholar

    [37] Kafi A, Paul A, Vilouras A, Hosseini ES, Dahiya RS. Chitosan-graphene oxide-based ultra-thin and flexible sensor for diabetic wound monitoring. IEEE Sens J 20, 6794–6801 (2020). doi: 10.1109/JSEN.2019.2928807

    CrossRef Google Scholar

    [38] Chen JX, Ouyang WX, Yang W, He JH, Fang XS. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications. Adv Funct Mater 30, 1909909 (2020). doi: 10.1002/adfm.201909909

    CrossRef Google Scholar

    [39] Teng F, Hu K, Ouyang WX, Fang XS. Photoelectric detectors based on inorganic p-type semiconductor materials. Adv Mater 30, 1706262 (2018). doi: 10.1002/adma.201706262

    CrossRef Google Scholar

    [40] Selzer F, Weiß N, Kneppe D, Bormann L, Sachse C et al. A spray-coating process for highly conductive silver nanowire networks as the transparent top-electrode for small molecule organic photovoltaics. Nanoscale 7, 2777–2783 (2015). doi: 10.1039/C4NR06502F

    CrossRef Google Scholar

    [41] Hyun WJ, Secor EB, Hersam MC, Frisbie CD, Francis LF. High-resolution patterning of graphene by screen printing with a silicon stencil for highly flexible printed electronics. Adv Mater 27, 109–115 (2015). doi: 10.1002/adma.201404133

    CrossRef Google Scholar

    [42] Zavanelli N, Yeo WH. Advances in screen printing of conductive nanomaterials for stretchable electronics. ACS Omega 6, 9344–9351 (2021). doi: 10.1021/acsomega.1c00638

    CrossRef Google Scholar

    [43] Pudukudy M, Yaakob Z. Facile synthesis of quasi spherical ZnO nanoparticles with excellent photocatalytic activity. J Cluster Sci 26, 1187–1201 (2015). doi: 10.1007/s10876-014-0806-1

    CrossRef Google Scholar

    [44] Prokhorov E, Luna-Bárcenas G, Yáñez Limón JM, Gómez Sánchez A, Kovalenko Y. Chitosan-ZnO Nanocomposites assessed by dielectric, mechanical, and piezoelectric properties. Polymers (Basel) 12, 1991 (2020). doi: 10.3390/polym12091991

    CrossRef Google Scholar

    [45] Yalagala BP, Sahatiya P, Kolli CSR, Khandelwal S, Mattela V et al. V2O5 nanosheets for flexible memristors and broadband photodetectors. ACS Appl Nano Mater 2, 937–947 (2019). doi: 10.1021/acsanm.8b02233

    CrossRef Google Scholar

    [46] Dahiya AS, Christou A, Neto J, Zumeit A, Shakthivel D, Dahiya R. Shakthivel, D., Dahiya, R., In Tandem Contact-Transfer Printing for High-Performance Transient Electronics. Adv Electron Mater 8, 2200170 (2022). doi: 10.1002/aelm.202200170

    CrossRef Google Scholar

    [47] Cai Q, You HF, Guo H, Wang J, Liu B et al. Progress on AlGaN-based solar-blind ultraviolet photodetectors and focal plane arrays. Light Sci Appl 10, 94 (2021). doi: 10.1038/s41377-021-00527-4

    CrossRef Google Scholar

    [48] Rasool A, Santhosh Kumar MC, Mamat MH, Gopalakrishnan C, Amiruddin R. Analysis on different detection mechanisms involved in ZnO-based photodetector and photodiodes. J Mater Sci Mater Electron 31, 7100–7113 (2020). doi: 10.1007/s10854-020-03280-3

    CrossRef Google Scholar

    [49] Guo S, Yang D, Wang DK, Fang X, Fang D et al. Response improvement of GaAs two-dimensional non-layered sheet photodetector through sulfur passivation and plasma treatment. Vacuum 197, 110792 (2022). doi: 10.1016/j.vacuum.2021.110792

    CrossRef Google Scholar

    [50] Zhang DK, Sheng Y, Wang JY, Gao F, Yan SC et al. ZnO nanowire photodetectors based on Schottky contact with surface passivation. Opt Commun 395, 72–75 (2017). doi: 10.1016/j.optcom.2015.07.007

    CrossRef Google Scholar

    [51] Young SJ, Liu YH, Hsiao CH, Chang SJ, Wang BC et al. ZnO-based ultraviolet photodetectors with novel nanosheet structures. IEEE Trans Nanotechnol 13, 238–244 (2014). doi: 10.1109/TNANO.2014.2298335

    CrossRef Google Scholar

    [52] Shabannia R. High-sensitivity UV photodetector based on oblique and vertical Co-doped ZnO nanorods. Mater Lett 214, 254–256 (2018). doi: 10.1016/j.matlet.2017.12.019

    CrossRef Google Scholar

    [53] Zumeit A, Dahiya AS, Christou A, Dahiya R. High-performance p-channel transistors on flexible substrate using direct roll transfer stamping. Jpn J Appl Phys 61, SC1042 (2022). doi: 10.35848/1347-4065/ac40ab

    CrossRef Google Scholar

    [54] Pires JRA, Souza VGL, Fuciños P, Pastrana L, Fernando AL. Methodologies to assess the biodegradability of bio-based polymers—current knowledge and existing gaps. Polymers (Basel) 14, 1359 (2022). doi: 10.3390/polym14071359

    CrossRef Google Scholar

    [55] Argüelles-Monal WM, Lizardi-Mendoza J, Fernández-Quiroz D, Recillas-Mota MT, Montiel-Herrera M. Chitosan derivatives: introducing new functionalities with a controlled molecular architecture for innovative materials. Polymers (Basel) 10, 342 (2018). doi: 10.3390/polym10030342

    CrossRef Google Scholar

    [56] Lin JJ, Lin WC, Li SD, Lin CY, Hsu SH. Evaluation of the antibacterial activity and biocompatibility for silver nanoparticles immobilized on nano silicate platelets. ACS Appl Mater Interfaces 5, 433–443 (2013). doi: 10.1021/am302534k

    CrossRef Google Scholar

    [57] Yan JC, Ai S, Yang F, Zhang KM, Huang YC. Study on mechanism of chitosan degradation with hydrodynamic cavitation. Ultrason Sonochem 64, 105046 (2020). doi: 10.1016/j.ultsonch.2020.105046

    CrossRef Google Scholar

    [58] Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V et al. Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Acta Biomater 10, 439–449 (2014). doi: 10.1016/j.actbio.2013.09.037

    CrossRef Google Scholar

    [59] Melro E, Antunes FE, da Silva GJ, Cruz I, Ramos PE et al. Chitosan films in food applications. tuning film properties by changing acidic dissolution conditions. Polymers (Basel) 13, 1 (2021).

    Google Scholar

    [60] De Masi A, Tonazzini I, Masciullo C, Mezzena R, Chiellini F et al. Chitosan films for regenerative medicine: fabrication methods and mechanical characterization of nanostructured chitosan films. Biophys Rev 11, 807–815 (2019). doi: 10.1007/s12551-019-00591-6

    CrossRef Google Scholar

    [61] Ferdous Z, Nemmar A. Health impact of silver nanoparticles: a review of the biodistribution and toxicity following various routes of exposure. Int J Mol Sci 21, 2375 (2020). doi: 10.3390/ijms21072375

    CrossRef Google Scholar

    [62] Birloaga I, Vegliò F. Overview on hydrometallurgical procedures for silver recovery from various wastes. J Environ Chem Eng 6, 2932–2938 (2018). doi: 10.1016/j.jece.2018.04.040

    CrossRef Google Scholar

    [63] Yao JL, Qiang WJ, Guo XQ, Fan HS, Zheng YS et al. Defect filling method of sensor encapsulation based on micro-nano composite structure with parylene coating. Sensors 21, 1107 (2021). doi: 10.3390/s21041107

    CrossRef Google Scholar

  • Supplementary information for ZnO nanowires based degradable highperformance photodetectors for eco-friendly green electronics
  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(1)

Article Metrics

Article views() PDF downloads() Cited by()

Access History
Article Contents

Catalog