A Novel Approach for Spatially Controllable High-Frequency Forecasts of Park Visitation Integrating Attention-Based Deep Learning Methods and Location-Based Services
Abstract
:1. Introduction
2. Literature Review
2.1. Approaches for Tourist Volume Forecasting
2.2. Data for Tourist Volume Forecasting
3. Materials and Methods
3.1. Control Mechanism for Forecasting Scope Based on Location-Based Services
3.2. The Proposed Deep Learning Model for High-Frequency Forecasting
3.2.1. The Neural Network Architecture
3.2.2. Deep Bidirectional Gated Recurrent Units
3.2.3. Attention Mechanism in the Network
4. Experiment
4.1. Overview
4.2. Study Area
4.3. Data Preparation and Model Setting
4.4. Performance Evaluation
5. Results and Discussion
5.1. Fitting Effects of the Forecasting Techniques
5.2. Results of the Performance Evaluations
5.3. Comparison of Forecasting Methods with Diebold–Mariano Test
5.4. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Palmer, A.; Montaño, J.; Sesé, A. Designing an artificial neural network for forecasting tourism time series. Tour. Manag. 2006, 27, 781–790. [Google Scholar] [CrossRef]
- Li, S.; Chen, T.; Wang, L.; Ming, C. Effective tourist volume forecasting supported by PCA and improved BPNN using Baidu index. Tour. Manag. 2018, 68, 116–126. [Google Scholar] [CrossRef]
- Jiao, E.X.; Chen, J.L. Tourism forecasting: A review of methodological developments over the last decade. Tour. Econ. 2019, 25, 469–492. [Google Scholar] [CrossRef]
- Divino, J.A.; McAleer, M. Modelling and forecasting daily international mass tourism to Peru. Tour. Manag. 2010, 31, 846–854. [Google Scholar] [CrossRef]
- Chu, F.L. Forecasting tourism demand with ARMA-based methods. Tour. Manag. 2008, 30, 740–751. [Google Scholar] [CrossRef]
- Wen, L.; Liu, C.; Song, H. Forecasting tourism demand using search query data: A hybrid modelling approach. Tour. Econ. 2019, 25, 309–329. [Google Scholar] [CrossRef]
- Li, X.; Pan, B.; Law, R.; Huang, X. Forecasting tourism demand with composite search index. Tour. Manag. 2017, 59, 57–66. [Google Scholar] [CrossRef]
- Sun, S.; Wei, Y.; Tsui, K.L.; Wang, S. Forecasting tourist arrivals with machine learning and internet search index. Tour. Manag. 2019, 70, 1–10. [Google Scholar] [CrossRef]
- Zhang, B.; Li, N.; Shi, F.; Law, R. A deep learning approach for daily tourist flow forecasting with consumer search data. Asia Pac. J. Tour. Res. 2020, 25, 323–339. [Google Scholar] [CrossRef]
- Lu, W.; Jin, J.; Wang, B.; Li, K.; Liang, C.; Dong, J.; Zhao, S. Intelligence in Tourist Destinations Management: Improved Attention-based Gated Recurrent Unit Model for Accurate Tourist Flow Forecasting. Sustainability 2020, 12, 1–20. [Google Scholar]
- Bi, J.-W.; Liu, Y.; Li, H. Daily tourism volume forecasting for tourist attractions. Ann. Touris. Res. 2020, 83, 102923. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, L.; Ding, Y. The Baidu Index: Uses in predicting tourism flows –A case study of the Forbidden City. Tour. Manag. 2017, 58, 301–306. [Google Scholar] [CrossRef]
- Law, R.; Li, G.; Fong, D.K.C.; Han, X. Tourism demand forecasting: A deep learning approach. Ann. Touris. Res. 2019, 75, 410–423. [Google Scholar] [CrossRef]
- Pan, B.; Wu, D.C.; Song, H. Forecasting hotel room demand using search engine data. J. Hosp. Tour. Technol. 2012, 3, 196–210. [Google Scholar] [CrossRef] [Green Version]
- Pan, B.; Yang, Y. Forecasting destination weekly hotel occupancy with big data. J. Travel Res. 2017, 56, 957–970. [Google Scholar] [CrossRef] [Green Version]
- Bangwayo-Skeete, P.F.; Skeete, R.W. Can Google data improve the forecasting performance of tourist arrivals? Mixed-data sampling approach. Tour. Manag. 2015, 46, 454–464. [Google Scholar] [CrossRef]
- Yang, Y.; Pan, B.; Song, H. Predicting hotel demand using destination marketing organization’s Network traffic data. J. Travel Res. 2014, 53, 433–447. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Liang, C.Y.; Hong, W.C.; Gu, D.X. Forecasting holiday daily tourist flow based on seasonal support vector regression with adaptive genetic algorithm. Appl. Soft Comput. 2015, 26, 435–443. [Google Scholar] [CrossRef]
- Li, K.; Liang, C.; Lu, W.; Li, C.; Zhao, S.; Wang, B. Forecasting of Short-Term Daily Tourist Flow Based on Seasonal Clustering Method and PSO-LSSVM. ISPRS Int. Geo-Inf. 2020, 9, 676. [Google Scholar] [CrossRef]
- Park, S.; Lee, J.; Song, W. Short-term forecasting of Japanese tourist inflow to South Korea using Google trends data. J. Travel Tour. Mark. 2017, 34, 357–368. [Google Scholar] [CrossRef]
- Zhang, B.; Huang, X.; Li, N.; Law, R. A novel hybrid model for tourist volume forecasting incorporating search engine data. Asia Pac. J. Tour. Res. 2017, 22, 245–254. [Google Scholar] [CrossRef]
- Song, H.; Li, G. Tourism demand modelling and forecasting. A review of recent research. Tour. Manag. 2008, 29, 203–220. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Law, R.; Xie, G.; Wang, S. Review of tourism forecasting research with internet data. Tour. Manag. 2021, 83, 104245. [Google Scholar] [CrossRef]
- Lee, C.K.; Song, H.J.; Mjelde, J.W. The forecasting of International Expo tourism using quantitative and qualitative techniques. Tour. Manag. 2008, 29, 1084–1098. [Google Scholar] [CrossRef] [PubMed]
- Smeral, E.; Wüger, M. Does complexity matter? Methods for improving forecasting accuracy in tourism: The case of Australia. J. Travel Res. 2005, 44, 100–110. [Google Scholar] [CrossRef]
- Assaf, A.G.; Li, G.; Song, H.; Tsionas, M.G. Modeling and forecasting regional tourism demand using the Bayesian Global Vector Autoregressive (BGVAR) model. J. Travel Res. 2018, 58, 383–397. [Google Scholar] [CrossRef]
- Dogru, T.; Sirakaya-Turk, E.; Crouch, G.I. Remodeling international tourism demand: Old theory and new evidence. Tour. Manag. 2017, 60, 47–55. [Google Scholar] [CrossRef]
- Smeral, E. Seasonal Forecasting Performance Considering Varying Income Elasticities in Tourism Demand. Tour. Econ. 2019, 25, 355–374. [Google Scholar] [CrossRef]
- Andrew, W.P.; Cranage, D.A.; Lee, C.K. Forecasting hotel occupancy rates with time series models: An empirical analysis. J. Hosp. Tour. Res. 1990, 14, 173–182. [Google Scholar] [CrossRef]
- Law, R. Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting. Tour. Manag. 2000, 21, 331–340. [Google Scholar] [CrossRef]
- Law, R.; Au, N. A neural network model to forecast Japanese demand for travel to Hong Kong. Tour. Manag. 1999, 20, 89–97. [Google Scholar] [CrossRef]
- Uysal, M.; El Roubi, M.S. Artificial neural networks versus multiple regression in tourism demand analysis. J. Travel Res. 1999, 38, 111–118. [Google Scholar] [CrossRef]
- Li, J.; Xu, L.; Tang, L.; Wang, S.; Li, L. Big data in tourism research: A literature review. Tour. Manag. 2018, 68, 301–323. [Google Scholar] [CrossRef]
- Song, H.; Qiu, R.T.; Park, J. A review of research on tourism demand forecasting. Ann. Touris. Res. 2019, 75, 338–362. [Google Scholar] [CrossRef]
- Kon, S.C.; Turner, W.L. Neural network forecasting of tourism demand. Tour. Econ. 2005, 11, 301–328. [Google Scholar] [CrossRef]
- Volchek, K.; Liu, A.; Song, H.; Buhalis, D. Forecasting tourist arrivals at attractions: Search engine empowered methodologies. Tour. Econ. 2019, 25, 425–447. [Google Scholar] [CrossRef]
- Claveria, O.; Torra, S. Forecasting tourism demand to Catalonia: Neural networks vs. time series models. Econ. Model. 2014, 36, 220–228. [Google Scholar] [CrossRef] [Green Version]
- Pai, P.F.; Hung, K.C.; Lin, K.P. Tourism demand forecasting using novel hybrid system. Expert Syst. Appl. 2014, 41, 3691–3702. [Google Scholar] [CrossRef]
- Zhang, B.; Pu, Y.; Wang, Y.; Li, J. Forecasting hotel accommodation demand based on LSTM model incorporating Internet search index. Sustainability 2019, 11, 4708. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Li, D.; Yang, Y.; Zhang, S. Spatiotemporal Traffic Flow Prediction with KNN and LSTM. J. Adv. Transp. 2019, 4145353. [Google Scholar] [CrossRef] [Green Version]
- Kulshrestha, A.; Krishnaswamy, V.; Sharma, M. Bayesian BILSTM approach for tourism demand forecasting. Ann. Touris. Res. 2020, 83, 1–19. [Google Scholar] [CrossRef]
- Li, K.; Lu, W.; Liang, C.; Wang, B. Intelligence in tourism management: A hybrid FOA-BP method on daily tourism demand forecasting with web search data. Mathematics 2019, 7, 531. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Z.; Pan, B. Travel queries on cities in the United States: Implications for search engine marketing for tourist destinations. Tour. Manag. 2011, 32, 88–97. [Google Scholar] [CrossRef]
- Fesenmaier, D.R.; Xiang, Z.; Pan, B.; Law, R. A framework of search engine use for travel planning. J. Travel Res. 2011, 50, 587–601. [Google Scholar] [CrossRef]
- Wang, X.; Zhou, Z.; Zhao, Y.; Zhang, X.; Xing, K.; Xiao, F.; Yang, Z.; Liu, Y. Improving Urban Crowd Flow Prediction on Flexible Region Partition. IEEE Trans. Mob. Comput. 2019, 19, 2804–2817. [Google Scholar] [CrossRef]
- Cecaj, A.; Lippi, M.; Mamei, M.; Zambonelli, F. Comparing Deep Learning and Statistical Methods in Forecasting Crowd Distribution from Aggregated Mobile Phone Data. Appl. Sci.-Basel 2020, 10, 6580. [Google Scholar] [CrossRef]
- Fan, Z.; Song, X.; Shibasaki, R.; Adachi, R. City Momentum: An online approach for crowd behavior prediction at a citywide level. In Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, Osaka, Japan, 7–11 September 2015; pp. 559–569. [Google Scholar]
- Zhao, Z.; Chen, W.; Wu, X.; Chen, P.C.Y.; Liu, J. LSTM network: A deep learning approach for short-term traffic forecast. IET Intell. Transp. Syst. 2017, 11, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Cui, Z.; Ke, R.; Pu, Z.; Wang, Y. Stacked Bidirectional and Unidirectional LSTM Recurrent Neural Network for Forecasting Network-wide Traffic State with missing values. Transp. Res. Part C Emerg. 2020, 118, 102674. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.Y.; Wong, W.K.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. Adv. Neural Inf. Process. Syst. 2015, 28, 802–810. [Google Scholar]
- Wang, Y.; Long, M.; Wang, J.; Gao, Z.; Yu, P.S. PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs. Adv. Neural Inf. Process. Syst. 2017, 1, 879–888. [Google Scholar]
- Zhang, C.; Zhou, H.-Y.; Qiu, Q.; Jian, Z.; Zhu, D.; Cheng, C.; He, L.; Liu, G.; Wen, X.; Hu, R. Augmented Multi-Component Recurrent Graph Convolutional Network for Traffic Flow Forecasting. ISPRS Int. J. Geo-Inf. 2022, 11, 88. [Google Scholar] [CrossRef]
- Zhao, J.; Chen, C.; Liao, C.; Huang, H.; Ma, J.; Pu, H.; Luo, J.; Zhu, T.; Wang, S. 2F-TP: Learning Flexible Spatiotemporal Dependency for Flexible Traffic Prediction. IEEE Trans. Intell. Transp. Syst. 2022. [CrossRef]
- Wielgosz, M.; Skoczeń, A.; Mertik, M. Using lstm recurrent neural networks for monitoring the LHC superconducting magnets. Nucl. Instrum. Methods Phys. Res. Sect. A-Accel. Spectrom. Dect. Assoc. Equip. 2017, 867, 40–50. [Google Scholar] [CrossRef]
- Schuster, M.; Paliwal, K.K. Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 1997, 45, 2673–2681. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, H.; Zhao, G.; Lian, J. Constructing a PM2.5 concentration prediction model by combining auto-encoder with Bi-LSTM neural networks. Environ. Model. Softw. 2020, 124, 104600. [Google Scholar] [CrossRef]
- Shahid, F.; Zameer, A.; Muneeb, M. Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM. Chaos Soliton Fract. 2020, 140, 110212. [Google Scholar] [CrossRef]
- Graves, A.; Schmidhuber, J. Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Networks 2005, 18, 602–610. [Google Scholar] [CrossRef]
- Ravanelli, M.; Brakel, P.; Omologo, M.; Bengio, Y. Light gated recurrent units for speech recognition. IEEE Trans. Emerg. Topics Comput. 2018, 2, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Becken, S. Measuring the effect of weather on tourism: A destination-and activity-based analysis. J. Travel Res. 2013, 52, 156–167. [Google Scholar] [CrossRef]
- Gössling, S.; Scott, D.; Hall, C.M.; Ceron, J.P.; Dubois, G. Consumer behavior and demand response of tourists to climate change. Ann. Touris. Res. 2012, 39, 36–58. [Google Scholar] [CrossRef]
- Mourad, L.; Qi, H.; Shen, Y.; Yin, B. ASTIR: Spatio-Temporal Data Mining for Crowd Flow Prediction. IEEE Access 2019, 7, 175159–175165. [Google Scholar] [CrossRef]
- Yuan, X.; Han, J.; Wang, X.; He, Y.; Xu, W.; Zhang, K. A Novel Learning Approach for Citywide Crowd Flow Prediction. In Proceedings of the 2019 Computing, Communications and IoT Applications (ComComAp), Shenzhen, China, 26–28 October 2019; IEEE: New York, NY, USA, 2009; pp. 341–346. [Google Scholar]
- Singh, U.; Determe, J.-F.; Horlin, F.; Doncker, P.D. Crowd Forecasting Based on WiFi Sensors and LSTM Neural Networks. IEEE Trans. Instrum. Meas. 2020, 69, 6121–6131. [Google Scholar] [CrossRef] [Green Version]
- Ali, A.; Zhu, Y.; Zakarya, M. A data aggregation based approach to exploit dynamic spatio-temporal correlations for citywide crowd flows prediction in fog computing. Multimed. Tools Appl. 2021, 80, 31401–31433. [Google Scholar] [CrossRef]
- Li, H.; Wang, Y.; Xu, X.; Qin, L.; Zhang, H. Short-term passenger flow prediction under passenger flow control using a dynamic radial basis function network. Appl. Soft Comput. 2019, 83, 105620. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, M.; Dong, S.; Lin, L.; Liu, Y. Remaining useful life estimation of engineered systems using vanilla LSTM neural networks. Neurocomputing 2018, 275, 167–179. [Google Scholar] [CrossRef]
- Lu, H.; Zhang, J.; Xu, Z.; Shi, R.; Wang, J.; Xu, S. Prediction of tourist flow based on multi-source traffic data in scenic spot. Trans. GIS 2020, 25, 1082–1103. [Google Scholar] [CrossRef]
- Peng, L.; Wang, L.; Ai, X.-Y.; Zeng, Y.-R. Forecasting Tourist Arrivals via Random Forest and Long Short-term Memory. Cogn. Comput. 2020, 13, 125–138. [Google Scholar] [CrossRef]
Model | RMSE | MAE | R2 | |
---|---|---|---|---|
Name | Category of Network | |||
RNN | Unidirectional | 146.138 | 122.510 | 0.655 |
LSTM | Unidirectional | 118.329 | 95.419 | 0.816 |
GRU | Unidirectional | 118.395 | 93.851 | 0.839 |
DBLSTM | Bidirectional (Stacked) | 102.478 | 72.101 | 0.896 |
DBGRU | Bidirectional (Stacked) | 79.326 | 57.003 | 0.939 |
Att-DBGRU | Bidirectional (with attention) | 62.289 | 44.482 | 0.970 |
Model | RMSE | MAE | R2 | ||
---|---|---|---|---|---|
Name | Category of Network | ||||
Area 1 | RNN | Unidirectional | 94.887 | 71.858 | 0.714 |
LSTM | Unidirectional | 87.392 | 64.002 | 0.780 | |
GRU | Unidirectional | 79.978 | 57.057 | 0.808 | |
DBLSTM | Bidirectional (Stacked) | 72.413 | 49.038 | 0.897 | |
DBGRU | Bidirectional (Stacked) | 66.724 | 45.475 | 0.908 | |
Att-DBGRU | Bidirectional (with attention) | 45.583 | 34.008 | 0.959 | |
Area 2 | RNN | Unidirectional | 39.929 | 30.804 | 0.824 |
LSTM | Unidirectional | 37.071 | 33.436 | 0.862 | |
GRU | Unidirectional | 45.108 | 38.811 | 0.859 | |
DBLSTM | Bidirectional (Stacked) | 30.440 | 23.608 | 0.929 | |
DBGRU | Bidirectional (Stacked) | 28.881 | 19.354 | 0.926 | |
Att-DBGRU | Bidirectional (with attention) | 16.622 | 9.761 | 0.981 |
Area | Model | DMCriteria | Benchmark Model | ||||
---|---|---|---|---|---|---|---|
DBGRU | DBLSTM | GRU | LSTM | RNN | |||
Att-DBGRU | (MAE) | −1.114 | −1.881 * | −3.194 ** | −3.628 ** | −5.073 ** | |
(MSE) | −1.118 | −1.878 * | −2.560 ** | −3.087 ** | −3.400 ** | ||
DBGRU | (MAE) | −2.672 ** | −7.297 ** | −4.462 ** | −7.585 ** | ||
(MSE) | −2.962 ** | −4.060 ** | −4.452 ** | −4.309 ** | |||
Taiyangdao | DBLSTM | (MAE) | −3.867 ** | −1.775 * | −5.513 ** | ||
(MSE) | −5.031 ** | −1.825 * | −4.177 ** | ||||
GRU | (MAE) | −0.165 | −3.756 ** | ||||
(MSE) | 0.008 | −2.871 ** | |||||
LSTM | (MAE) | −3.067 ** | |||||
(MSE) | −2.610 ** | ||||||
Att-DBGRU | (MAE) | −2.709 ** | −2.724 ** | −3.235 ** | −4.200 ** | −4.033 ** | |
(MSE) | −2.936 ** | −2.444 ** | −2.976 ** | −3.145 ** | −2.966 ** | ||
DBGRU | (MAE) | −1.320 | −1.663 * | −3.720 ** | −3.831 ** | ||
(MSE) | −1.227 | −1.864 * | −2.819 ** | −2.613 ** | |||
Area 1 | DBLSTM | (MAE) | −1.194 | −3.319 ** | −3.722 ** | ||
(MSE) | −1.405 | −3.108 ** | −2.854 ** | ||||
GRU | (MAE) | −1.642 | −1.893* | ||||
(MSE) | −1.780 * | −2.044 ** | |||||
LSTM | (MAE) | −1.685 * | |||||
(MSE) | −1.678 * | ||||||
Att-DBGRU | (MAE) | −3.565 ** | −8.862 ** | −6.526 ** | −5.577 ** | −7.648 ** | |
(MSE) | −2.267 ** | −3.501 ** | −4.886 ** | −5.610 ** | −3.366 ** | ||
DBGRU | (MAE) | −2.065 ** | −2.972 ** | −2.202 ** | −3.462 ** | ||
(MSE) | −0.525 * | −2.375 ** | −1.441 | −2.516 ** | |||
Area 2 | DBLSTM | (MAE) | 2.610 ** | −1.910 * | −2.770 ** | ||
(MSE) | −2.225 ** | −1.345 | −2.623 ** | ||||
GRU | (MAE) | 1.221 | 1.352 | ||||
(MSE) | 1.532 | 0.686 | |||||
LSTM | (MAE) | 0.523 | |||||
(MSE) | −0.436 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, M.; Xie, Q. A Novel Approach for Spatially Controllable High-Frequency Forecasts of Park Visitation Integrating Attention-Based Deep Learning Methods and Location-Based Services. ISPRS Int. J. Geo-Inf. 2023, 12, 98. https://doi.org/10.3390/ijgi12030098
Lu M, Xie Q. A Novel Approach for Spatially Controllable High-Frequency Forecasts of Park Visitation Integrating Attention-Based Deep Learning Methods and Location-Based Services. ISPRS International Journal of Geo-Information. 2023; 12(3):98. https://doi.org/10.3390/ijgi12030098
Chicago/Turabian StyleLu, Ming, and Qian Xie. 2023. "A Novel Approach for Spatially Controllable High-Frequency Forecasts of Park Visitation Integrating Attention-Based Deep Learning Methods and Location-Based Services" ISPRS International Journal of Geo-Information 12, no. 3: 98. https://doi.org/10.3390/ijgi12030098