Fasciola hepatica Soluble Antigen (FhAg)-Induced NETs Under Hypoxic Conditions Exert Cytotoxic Effects on Hepatic Cells In Vitro
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Isolation of PMNs
2.2. Soluble Fasciola hepatica Antigen (FhAg) Preparation
2.3. Determination of Matrix Metalloproteinase 9 (MMP-9) Activities in PMN Supernatants
2.4. Immunofluorescence Microscopy Analyses for Visualization of FhAg-Induced NETosis Under Hypoxia (5% O2) In Vitro
2.5. Extracellular DNA-Based Quantification of Cell-Free and Anchored NETs Phenotypes Induced by FhAg Under Hypoxia
2.6. Determination of NADPH Oxidase (NOX) Inhibition on NET Formation
2.7. Flow Cytometric Analysis of FhAg-Induced CD11b Surface Expression on Ovine PMNs
2.8. Isolation of FhAg- and A23187-Induced NETs
2.9. Estimation of FhAg-Induced NETs Cytotoxicity in Exposed Hepatic Cells In Vitro
Statistical Analyses
3. Results
3.1. Immunofluorescence Analysis Confirmed Extrusion FhAg-Induced NETs Under Hypoxic Conditions In Vitro
3.2. Hypoxic Conditions Enhance the Formation of Anchored and Cell-Free NET Phenotypes Induced by FhAg
3.3. NADPH Oxidase (NOX) Inhibition Significantly Reduces Extrusion of Anchored and Cell-Free NETs Under Hypoxia
3.4. FhAg-Triggered NETs (FhAg-NETs) Are Cytotoxic for Hepatic Cells
3.5. FhAg Exposure Enhances Matrix Metalloprotease 9 (MMP-9) Release in Ovine- but Not in Bovine PMNs
3.6. Exposure of Ovine PMNs to FhAg Did Not Increase Surface Expression of CD11b
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dalton, J.P.; Robinson, M.W.; Mulcahy, G.; O’Neill, S.M.; Donnelly, S. Immunomodulatory molecules of Fasciola hepatica: Candidates for both vaccine and immunotherapeutic development. Vet. Parasitol. 2013, 195, 272–285. [Google Scholar] [CrossRef] [PubMed]
- Cwiklinski, K.; O’Neill, S.M.; Donnelly, S.; Dalton, J.P. A prospective view of animal and human Fasciolosis. Parasite Immunol. 2016, 38, 558–568. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Campillo, M.T.; Hernandez, V.M.; Escamilla, A.; Stevenson, M.; Perez, J.; Martinez-Moreno, A.; Donnelly, S.; Dalton, J.P.; Cwiklinski, K. Immune signatures of pathogenesis in the peritoneal compartment during early infection of sheep with Fasciola hepatica. Sci. Rep. 2017, 7, 2782. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Bargues, M.D.; Valero, M.A. Fascioliasis and other plant-borne trematode zoonoses. Int. J. Parasitol. 2005, 35, 1255–1278. [Google Scholar] [CrossRef]
- Charlier, J.; Vercruysse, J.; Morgan, E.; van Dijk, J.; Williams, D.J. Recent advances in the diagnosis, impact on production and prediction of Fasciola hepatica in cattle. Parasitology 2014, 141, 326–335. [Google Scholar] [CrossRef]
- Olaechea, F.; Lovera, V.; Larroza, M.; Raffo, F.; Cabrera, R. Resistance of Fasciola hepatica against triclabendazole in cattle in Patagonia (Argentina). Vet. Parasitol. 2011, 178, 364–366. [Google Scholar] [CrossRef]
- Pérez, J.; Ortega, J.; Moreno, T.; Morrondo, P.; López-Sández, C.; Martínez-Moreno, A. Pathological and immunohistochemical study of the liver and hepatic lymph nodes of sheep chronically reinfected with Fasciola hepatica, with or without triclabendazole treatment. J. Comp. Pathol. 2002, 127, 30–36. [Google Scholar] [CrossRef]
- Stuen, S.; Ersdal, C. Fasciolosis-An Increasing Challenge in the Sheep Industry. Animals 2022, 12, 1491. [Google Scholar] [CrossRef]
- McNeilly, T.N.; Nisbet, A.J. Immune modulation by helminth parasites of ruminants: Implications for vaccine development and host immune competence. Parasite 2014, 21, 51. [Google Scholar] [CrossRef]
- Chauvin, A.; Bouvet, G.; Boulard, C. Humoral and cellular immune responses to Fasciola hepatica experimental primary and secondary infection in sheep. Int. J. Parasitol. 1995, 25, 1227–1241. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Valero, M.A.; Bargues, M.D. Fascioliasis. Exp. Med. Biol. 2019, 1154, 71–103. [Google Scholar]
- Andrews, J.S. Life cycle of Fasciola hepatica. In Fasciolosis; Dalton, J.P., Ed.; CABI Pub: Wallingford, UK, 2019; pp. 1–30. [Google Scholar]
- Molina-Hernández, V.; Mulcahy, G.; Pérez, J.; Martinez-Moreno, A.; Donnelly, S.; O’Neill, S.M.; Dalton, J.P.; Cwiklinski, K. Fasciola hepatica vaccine: We may not be there yet but we’re on the right road. Vet. Parasitol. 2015, 208, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Urquhart, G.; Armour, J.; Duncan, J.; Dunn, A.; Jennings, F. Veterinary parasitology, 2nd ed.; Blackwell Science: Oxford, UK, 1996. [Google Scholar]
- Sargison, N.D.; Scott, P.R. Diagnosis and economic consequences of triclabendazole resistance in Fasciola hepatica in a sheep flock in south-east Scotland. Vet. Rec. 2011, 168, 159. [Google Scholar] [CrossRef] [PubMed]
- Dorey, A.; Cwiklinski, K.; Rooney, J.; De Marco Verissimo, C.; Corrales, J.L.; Jewhurst, H.; Fazekas, B.; Calvani, N.E.D.; Hamon, S.; Gaughan, S.; et al. Autonomous non antioxidant roles for Fasciola hepatica secreted Thioredoxin-1 and Peroxiredoxin-1. Front. Cell. Infect. Microbiol. 2021, 11, 667272. [Google Scholar] [CrossRef]
- Marcos, L.A.; Yi, P.; Machicado, A.; Andrade, R.; Samalvides, F.; Sánchez, J.; Terashima, A. Hepatic fibrosis and Fasciola hepatica infection in cattle. J. Helminthol. 2007, 81, 381–386. [Google Scholar] [CrossRef]
- Tliba, O.; Sibille, P.; Boulard, C.; Chauvin, A. Local hepatic immune response in rats during primary infection with Fasciola hepatica. Parasite 2000, 7, 9–18. [Google Scholar] [CrossRef]
- Zafra, R.; Pérez-Écija, R.; Buffoni, L.; Pacheco, I.; Martínez-Moreno, A.; LaCourse, E.; Perally, S.; Brophy, P.; Pérez, J. Early hepatic and peritoneal changes and immune response in goats vaccinated with a recombinant glutathione transferase sigma class and challenged with Fasciola hepatica. Res. Vet. Sci. 2013, 94, 602–609. [Google Scholar] [CrossRef]
- Mas-Coma, S.; Bargues, M.D.; Marty, A.M.; Neafie, R.C. Hepatic trematodiases. In Pathology of Infectious Diseases, Helminthiases, 1st ed.; Meyers, W.M., Neafie, R.C., Marty, A.M., Wear, D.J., Eds.; Armed Forces Institute of Pathology and American Registry of Pathology: Washington, DC, USA, 2000; pp. 69–92. [Google Scholar]
- Valero, M.A.; Santana, M.; Morales, M.; Hernandez, J.L.; Mas-Coma, S. Risk of gallstone disease in advanced chronic phase of fascioliasis: An experimental study in a rat model. J. Infect. Dis. 2003, 188, 787–793. [Google Scholar] [CrossRef]
- Davies, C.; Goose, J. Killing of newly excysted juveniles of Fasciola hepatica in sensitized rats. Parasite Immunol. 1981, 3, 81–96. [Google Scholar] [CrossRef]
- Cwiklinski, K.; Jewhurst, H.; McVeigh, P.; Barbour, T.; Maule, A.G.; Tort, J.; O’Neill, S.M.; Robinson, M.W.; Donnelly, S.; Dalton, J.P. Infection by the helminth parasite Fasciola hepatica requires rapid regulation of metabolic, virulence, and invasive factors to adjust to its mammalian host. Mol. Cell. Proteom. 2018, 17, 792–809. [Google Scholar] [CrossRef]
- Iwasaki, A.; Medzhitov, R. Control of adaptative immunity by the innate immune system. Nat. Immunol. 2015, 16, 343–353. [Google Scholar] [CrossRef] [PubMed]
- Weissmann, G.; Smolen, J.E.; Korchak, H.M. Release of inflammatory mediators from stimulated neutrophils. N. Engl. J. Med. 1980, 303, 27–34. [Google Scholar] [PubMed]
- Hermosilla, C.; Caro, T.M.; Silva, L.M.; Ruiz, A.; Taubert, A. The intriguing host innate immune response: Novel anti-parasitic defence by neutrophil extracellular traps. Parasitology 2014, 141, 1489–1498. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Caro, T.; Huertas, S.J.M.; Conejeros, I.; Alarcón, P.; Hidalgo, M.A.; Burgos, R.A.; Hermosilla, C.; Taubert, A. Eimeria bovis-triggered neutrophil extracellular trap formation is CD11b-, ERK 1/2-, p38 MAP kinase- and SOCE-dependent. Vet. Res. 2015, 46, 23. [Google Scholar] [CrossRef] [PubMed]
- Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 2007, 176, 231–241. [Google Scholar] [CrossRef]
- Brinkmann, V.; Zychlinsky, A. Neutrophil extracellular traps: Is immunity the second function of chromatin. J. Cell Biol. 2012, 198, 773–783. [Google Scholar] [CrossRef]
- Silva, L.M.R.; Muñoz-Caro, T.; Burgos, R.A.; Hidalgo, M.A.; Taubert, A.; Hermosilla, C. Far beyond phagocytosis: Phagocyte-derived extracellular traps act efficiently against protozoan parasites in vitro and in vivo. Mediat. Inflamm. 2016, 10, 5898074. [Google Scholar] [CrossRef]
- Brinkmann, V.; Reichard, U.; Goosmann, C.; Fauler, B.; Uhlemann, Y.; Weiss, D.S.; Weinrauch, Y.; Zychlinsky, A. Neutrophil extracellular traps kill bacteria. Science 2004, 303, 1532–1535. [Google Scholar] [CrossRef]
- Urban, C.F.; Ermert, D.; Schmid, M.; Abu-Abed, U.; Goosmann, C.; Nacken, W. Neutrophil extracellular traps contain calprotectin, a cytosolic protein complex involved in host defense against Candida albicans. PLoS Pathog. 2009, 5, e1000639. [Google Scholar] [CrossRef]
- Neumann, A.; Brogden, G.; Kockritz-Blickwede, M. Extracellular traps: An ancient weapon of multiple kingdoms. Biology 2020, 9, 34. [Google Scholar] [CrossRef]
- Chuah, C.; Jones, M.K.; Burke, M.L.; Owen, H.C.; Anthony, B.J.; McManus, D.P.; Rann, G.A.; Gobert, G.N. Spatial and temporal transcriptomics of Schistosoma japonicum-induced hepatic granuloma formation reveals novel roles for neutrophils. Leukoc. Biol. 2013, 94, 353–365. [Google Scholar] [CrossRef] [PubMed]
- Watakulsin, K.; Chuenchom, C.; Thapphan, C.; Thai, T.D.; Chareonsudjai, S.; Faksri, K.; Suttiprapa, S.; Tangkawatana, S.; Sripa, B.; Edwards, S.W.; et al. Neutrophils form extracellular traps in response to Opisthorchis viverrini crude antigens, which are elevated in neutrophils from opisthorchiasis patients with hepatobiliary abnormalities. Biol. Open 2023, 12, bio059909. [Google Scholar] [CrossRef] [PubMed]
- Guo, A.J.; Wang, L.; Meng, X.L.; Zhang, H.M.; Sheng, Z.A.; Wei, Z.K.; Luo, X.-N.; Huang, W.; Zhu, X.Q.; Zhang, X.C.; et al. Newly excysted juveniles of Fasciola gigantica trigger the release of water buffalo neutrophil extracel lular traps in vitro. Exp. Parasitol. 2020, 211, 107828. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, R.; Silva, L.M.R.; López-Osório, S.; Zhou, E.; Gärtner, U.; Conejeros, I.; Taubert, A.; Hermosilla, C. Fasciola hepatica induces weak NETosis and low production of intra- and extracellular ROS in exposed bovine polymorphonuclear neutrophils. Dev. Comp. Immunol. 2021, 14, 103787. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Caro, T.; Gómez-Ceruti, M.; Silva, L.M.R.; Gutiérrez-Expósito, D.; Wagner, H.; Taubert, A.; Hermosilla, C. Fasciola hepatica soluble antigens (FhAg) induce ovine PMN innate immune reactions and NET formation in vitro and in vivo. Vet. Res. 2023, 54, 105. [Google Scholar] [CrossRef]
- Kaplan, M.J.; Radic, M. Neutrophil extracellular traps: Double-edged swords of innate immunity. J. Immunol. 2012, 189, 2689–2695. [Google Scholar] [CrossRef]
- Quiroga, J.; Alarcón, P.; Ramírez, M.F.; Manosalva, C.; Teuber, S.; Carretta, M.D.; Burgos, R.A. D-lactate-induced ETosis in cattle polymorphonuclear leucocytes is dependent on the release of mitochondrial reactive oxygen species and the PI3K/Akt/HIF-1 and GSK-3β pathways. Dev. Comp. Immunol. 2023, 145, 104728. [Google Scholar] [CrossRef]
- Conejeros, I.; Jara, E.; Carretta, M.D.; Alarcón, P.; Hidalgo, M.A.; Burgos, R.A. 2 Aminoethoxydiphenyl borate (2-APB) reduces respiratory burst, MMP-9 release and CD11b expression, and increases l-selectin shedding in bovine neutrophils. Res. Vet. Sci. 2012, 92, 103–110. [Google Scholar] [CrossRef]
- Tanaka, K.; Koike, Y.; Shimura, T.; Okigami, M.; Ide, S.; Toiyama, Y.; Okugawa, Y.; Inoue, Y.; Araki, T.; Uchida, K.; et al. In vivo characterization of neutrophil extracellular traps in various organs of a murine sepsis model. PLoS ONE 2014, 9, e111888. [Google Scholar] [CrossRef]
- Conejeros, I.; Velásquez, Z.D.; Grob, D.; Zhou, E.; Salecker, H.; Hermosilla, C.; Taubert, A. Histone H2A and Bovine Neutrophil Extracellular Traps Induce Damage of Besnoitia besnoiti-Infected Host Endothelial Cells but Fail to Affect Total Parasite Proliferation. Biology 2019, 8, 78. [Google Scholar] [CrossRef]
- Burgos, R.A.; Conejeros, I.; Hidalgo, M.A.; Werling, D.; Hermosilla, C. Calcium influx, a new potential therapeutic target in the control of neutrophil-dependent inflammatory diseases in bovines. Vet. Immunol. Immunopathol. 2011, 143, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Giatromanolaki, A.; Sivridis, E.; Maltezos, E.; Papazoglou, D.; Simopoulos, C.; Gatter, K.C.; Harris, A.L.; I Koukourakis, M. Hypoxia inducible factor 1 alpha and 2 alpha overexpression in inflammatory bowel disease. J. Clin. Pathol. 2003, 56, 209–213. [Google Scholar] [CrossRef]
- Mahnke, A.; Meier, R.J.; Schatz, V.; Hofmann, J.; Castiglione, K.; Schleicher, U.; Wolfbeis, O.S.; Bogdan, C.; Jantsch, J. Hypoxia in Leishmania major skin lesions impairs the NO-dependent leishmanicidal activity of macrophages. J. Investig. Dermatol. 2014, 134, 2339–2346. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.H.; Kim, C.H.; Yang, K.S.; Lee, E.J.; Min, K.H.; Hur, G.Y.; Lee, S.Y.; Kim, J.H.; Shin, C.; Shim, J.J.; et al. Increased expression of vascular endothelial growth factor and hypoxia inducible factor-1α in lung tissue of patients with chronic bronchitis. Clin. Biochem. 2014, 47, 552–559. [Google Scholar] [CrossRef] [PubMed]
- Tohme, S.; Yazdani, H.O.; Al-Khafaji, A.B.; Chidi, A.P.; Loughran, P.; Mowen, A.K.; Wang, Y.; Simmons, R.L.; Huang, H.; Tsung, A. Neutrophil Extracellular Traps Promote the Development and Progression of Liver Metastases after Surgical Stress. Cancer Res. 2016, 76, 1367–1380. [Google Scholar] [CrossRef]
- Behrendt, J.H.; Hermosilla, C.; Hardt, M.; Failing, K.; Zahner, H.; Taubert, A. PMN mediated immune reactions against Eimeria bovis. Vet. Parasitol. 2008, 151, 97–109. [Google Scholar] [CrossRef]
- Gupta, A.K.; Joshi, M.B.; Philippova, M.; Erne, P.; Hasler, P.; Hahn, S.; Resink, T.J. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett. 2010, 584, 3193–3197. [Google Scholar] [CrossRef]
- Byrd, A.S.; O’Brien, X.M.; Johnson, C.M.; Lavigne, L.M.; Reichner, J.S. An extracellular matrix–based mechanism of rapid neutrophil extracellular trap formation in response to Candida albicans. J. Immunol. 2013, 190, 4136–4148. [Google Scholar] [CrossRef]
- Aulik, N.A.; Hellenbrand, K.M.; Klos, H.; Czuprynski, C.J. Mannheimia haemolytica and its leukotoxin cause neutrophil extracellular trap formation by bovine neutrophils. Infect. Immun. 2010, 78, 4454–4466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Caro, T.; Quiroz, P.; Abarca, C.; Gómez-Ceruti, M.; Alarcón, P.; Teuber, S.; Navarro, M.; Taubert, A.; Hermosilla, C.; Burgos, R.A. Fasciola hepatica Soluble Antigen (FhAg)-Induced NETs Under Hypoxic Conditions Exert Cytotoxic Effects on Hepatic Cells In Vitro. Animals 2024, 14, 3456. https://doi.org/10.3390/ani14233456
Muñoz-Caro T, Quiroz P, Abarca C, Gómez-Ceruti M, Alarcón P, Teuber S, Navarro M, Taubert A, Hermosilla C, Burgos RA. Fasciola hepatica Soluble Antigen (FhAg)-Induced NETs Under Hypoxic Conditions Exert Cytotoxic Effects on Hepatic Cells In Vitro. Animals. 2024; 14(23):3456. https://doi.org/10.3390/ani14233456
Chicago/Turabian StyleMuñoz-Caro, Tamara, Pamela Quiroz, Cristina Abarca, Marcela Gómez-Ceruti, Pablo Alarcón, Stefanie Teuber, Max Navarro, Anja Taubert, Carlos Hermosilla, and Rafael A. Burgos. 2024. "Fasciola hepatica Soluble Antigen (FhAg)-Induced NETs Under Hypoxic Conditions Exert Cytotoxic Effects on Hepatic Cells In Vitro" Animals 14, no. 23: 3456. https://doi.org/10.3390/ani14233456
APA StyleMuñoz-Caro, T., Quiroz, P., Abarca, C., Gómez-Ceruti, M., Alarcón, P., Teuber, S., Navarro, M., Taubert, A., Hermosilla, C., & Burgos, R. A. (2024). Fasciola hepatica Soluble Antigen (FhAg)-Induced NETs Under Hypoxic Conditions Exert Cytotoxic Effects on Hepatic Cells In Vitro. Animals, 14(23), 3456. https://doi.org/10.3390/ani14233456