Concentrations of Ciprofloxacin in the World’s Rivers Are Associated with the Prevalence of Fluoroquinolone Resistance in Escherichia coli: A Global Ecological Analysis
Abstract
:1. Background
2. Methods
2.1. Antimicrobial Resistance Data
2.2. Quinolone Concentrations in Rivers
2.3. Statistical Analyses
3. Results
Spearman’s Correlations
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Collignon, P.; Athukorala, P.C.; Senanayake, S.; Khan, F. Antimicrobial resistance: The major contribution of poor governance and corruption to this growing problem. PLoS ONE 2015, 10, e0116746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chereau, F.; Opatowski, L.; Tourdjman, M.; Vong, S. Risk assessment for antibiotic resistance in South East Asia. BMJ 2017, 358, 2–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, B.; Cao, Y.; Pan, S.; Zhuang, L.; Yu, R.; Peng, Z.; Qian, H.; Wei, Y.; Zhao, L.; Liu, G.; et al. Comparison of the prevalence and changing resistance to nalidixic acid and ciprofloxacin of Shigella between Europe–America and Asia–Africa from 1998 to 2009. Int. J. Antimicrob. Agents 2012, 40, 9–17. [Google Scholar] [CrossRef] [PubMed]
- Collignon, P.; Beggs, J.J. Socioeconomic Enablers for Contagion: Factors Impelling the Antimicrobial Resistance Epidemic. Antibiotics 2019, 8, 86. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collignon, P.; Beggs, J.J.; Walsh, T.R.; Gandra, S.; Laxminarayan, R. Anthropological and socioeconomic factors contributing to global antimicrobial resistance: A univariate and multivariable analysis. Lancet Planet Health 2018, 2, e398–e405. [Google Scholar] [CrossRef] [PubMed]
- Wilkinson, J.L.; Boxall, A.B.; Kolpin, D.W.; Leung, K.M.; Lai, R.W.; Galbán-Malagón, C.; Adell, A.D.; Mondon, J.; Metian, M.; Marchant, R.A.; et al. Pharmaceutical pollution of the world’s rivers. Proc. Natl. Acad. Sci. USA 2022, 119, e2113947119. [Google Scholar] [CrossRef] [PubMed]
- Baquero, F.; Martínez, J.-L.; Cantón, R. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 2008, 19, 260–265. [Google Scholar] [CrossRef]
- Gullberg, E.; Cao, S.; Berg, O.G.; Ilbäck, C.; Sandegren, L.; Hughes, D.; Andersson, D.I. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog. 2011, 7, e1002158. [Google Scholar] [CrossRef] [Green Version]
- Bengtsson-Palme, J.; Larsson, D.G. Concentrations of antibiotics predicted to select for resistant bacteria: Proposed limits for environmental regulation. Environ. Int. 2016, 86, 140–149. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gullberg, E.; Albrecht, L.M.; Karlsson, C.; Sandegren, L.; Andersson, D.I. Selection of a multidrug resistance plasmid by sublethal levels of antibiotics and heavy metals. MBio 2014, 5, e01918-14. [Google Scholar] [CrossRef] [Green Version]
- Stanton, I.C.; Murray, A.K.; Zhang, L.; Snape, J.; Gaze, W.H. Evolution of antibiotic resistance at low antibiotic concentrations including selection below the minimal selective concentration. Commun. Biol. 2020, 3, 467. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.R.; Curriero, F.C.; Gibson, K.E.; Schwab, K.J. Antibiotic-resistant enterococci and fecal indicators in surface water and groundwater impacted by a concentrated swine feeding operation. Environ. Health Perspect. 2007, 115, 1040–1045. [Google Scholar] [CrossRef] [PubMed]
- Watkinson, A.; Micalizzi, G.; Bates, J.; Costanzo, S. Novel method for rapid assessment of antibiotic resistance in Escherichia coli isolates from environmental waters by use of a modified chromogenic agar. Appl. Environ. Microbiol. 2007, 73, 2224–2229. [Google Scholar] [CrossRef] [Green Version]
- Leonard, A.F.; Zhang, L.; Balfour, A.J.; Garside, R.; Hawkey, P.M.; Murray, A.K.; Ukoumunne, O.C.; Gaze, W.H. Exposure to and colonisation by antibiotic-resistant E. coli in UK coastal water users: Environmental surveillance, exposure assessment, and epidemiological study (Beach Bum Survey). Environ. Int. 2018, 114, 326–333. [Google Scholar] [CrossRef] [PubMed]
- Shah, N.; DuPont, H.L.; Ramsey, D.J. Global etiology of travelers’ diarrhea: Systematic review from 1973 to the present. Am. J. Trop. Med. Hyg. 2009, 80, 609–614. [Google Scholar] [CrossRef] [PubMed]
- The Center for Disease Dynamics Economics & Policy. ResistanceMap: Antibiotic Resistance. 2021. Available online: https://resistancemap.cddep.org/AntibioticResistance.php (accessed on 10 February 2022).
- ECDC/EFSA/EMA. ECDC/EFSA/EMA second joint report on the integrated analysis of the consumption of antimicrobial agents and occurrence of antimicrobial resistance in bacteria from humans and food-producing animals: Joint Interagency Antimicrobial Consumption and Resistance Analysis (JIACRA) Report. Efsa J. 2017, 15, e04872. [Google Scholar] [CrossRef]
- Kenyon, C. Positive Association between the Use of Quinolones in Food Animals and the Prevalence of Fluoroquinolone Resistance in E. coli and K. pneumoniae, A. baumannii and P. aeruginosa: A Global Ecological Analysis. Antibiotics 2021, 10, 1193. [Google Scholar] [CrossRef]
- Vieira, A.R.; Collignon, P.; Aarestrup, F.M.; McEwen, S.A.; Hendriksen, R.S.; Hald, T.; Wegener, H.C. Association between antimicrobial resistance in Escherichia coli isolates from food animals and blood stream isolates from humans in Europe: An ecological study. Foodborne Pathog. Dis. 2011, 8, 1295–1301. [Google Scholar] [CrossRef]
- Muloi, D.; Ward, M.J.; Pedersen, A.B.; Fevre, E.M.; Woolhouse, M.E.; van Bunnik, B.A. Are food animals responsible for transfer of antimicrobial-resistant Escherichia coli or their resistance determinants to human populations? A systematic review. Foodborne Pathog. Dis. 2018, 15, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Song, J. Antimicrobial resistance control in Asia. AMR Control 2015, 8, 41–45. [Google Scholar]
- Yam, E.L.Y.; Hsu, L.Y.; Yap, E.P.H.; Yeo, T.W.; Lee, V.; Schlundt, J.; Lwin, M.O.; Limmathurotsakul, D.; Jit, M.; Dedon, P.; et al. Antimicrobial Resistance in the Asia Pacific region: A meeting report. Antimicrob. Resist. Infect. Control 2019, 8, 202, PMCID:PMCPMC6921568. [Google Scholar] [CrossRef] [PubMed]
- Lundborg, C.S.; Tamhankar, A.J. Antibiotic residues in the environment of South East Asia. BMJ. 2017, 358, j2440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Food Safety Authority. The European Union Summary Report on Antimicrobial Resistance in zoonotic and indicator bacteria from humans, animals and food in 2018/2019. Efsa J. 2021, 19, e06490. [Google Scholar]
Country | Year a | n Sites Tested b | Ciprofloxacin Concentration (Median, ng/L) | Ciprofloxacin Concentration (Mean, ng/L) | E. coli Fluoroquinolone Resistance (%) |
---|---|---|---|---|---|
Australia | 2017 | 0 | 0 | 0 | 12 |
Austria | 2017 | 2 | 58.7 | 58.7 | 22 |
Belgium | 2017 | 2 | 66.8 | 66.8 | 25 |
Bulgaria | 2017 | 0 | 0 | 0 | 43 |
Canada | 2014 | 0 | 0 | 0 | 21 |
Chile | 2014 | 0 | 0 | 0 | 29 |
China | 2017 | 4 | 330.5 | 329.5 | 56 |
Croatia | 2017 | 0 | 0 | 0 | 29 |
Cyprus | 2018 | 3 | 47.9 | 59.8 | 44 |
Czech Republic | 2017 | 7 | 21.5 | 22.8 | 26 |
Denmark | 2017 | 0 | 0 | 0 | 14 |
Estonia | 2017 | 0 | 0 | 0 | 20 |
Finland | 2017 | 4 | 33.5 | 41 | 14 |
France | 2017 | 0 | 0 | 0 | 17 |
Germany | 2017 | 4 | 63.2 | 96.9 | 23 |
Ghana | 2016 | 1 | 122 | 122 | 59 |
Greece | 2017 | 0 | 0 | 0 | 34 |
Hungary | 2017 | 0 | 0 | 0 | 31 |
Iceland | 2017 | 0 | 0 | 0 | 14 |
India | 2017 | 6 | 275.2 | 303.3 | 84 |
Ireland | 2017 | 0 | 0 | 0 | 26 |
Italy | 2017 | 0 | 0 | 0 | 47 |
Japan | 2017 | 0 | 0 | 0 | 30 |
Kenya | 2015 | 7 | 67.3 | 78.2 | 58 |
Latvia | 2017 | 0 | 0 | 0 | 32 |
Lithuania | 2017 | 0 | 0 | 0 | 28 |
Malaysia | 2017 | 10 | 42.7 | 52.8 | 26 |
Mexico | 2015 | 3 | 32.6 | 26.7 | 62 |
Netherlands | 2017 | 0 | 0 | 0 | 16 |
New Zealand | 2015 | 0 | 0 | 0 | 10 |
Nigeria | 2017 | 8 | 102.2 | 144.8 | 76 |
Norway | 2017 | 0 | 0 | 0 | 16 |
Pakistan | 2017 | 4 | 51.1 | 52.0 | 59 |
Philippines | 2017 | 0 | 0 | 0 | 39 |
Poland | 2017 | 1 | 193 | 193 | 38 |
Portugal | 2017 | 4 | 98.7 | 99.0 | 30 |
Romania | 2017 | 0 | 0 | 0 | 28 |
Russia | 2017 | 0 | 0 | 0 | 63 |
Slovenia | 2017 | 0 | 0 | 0 | 26 |
South Africa | 2016 | 0 | 0 | 0 | 28 |
South Korea | 2017 | 0 | 0 | 0 | 37 |
Spain | 2017 | 0 | 0 | 0 | 33 |
Sri Lanka | 2009 | 0 | 0 | 0 | 59 |
Sweden | 2017 | 0 | 0 | 0 | 17 |
Switzerland | 2017 | 0 | 0 | 0 | 19 |
Thailand | 2017 | 0 | 0 | 0 | 47 |
Tunisia | 2017 | 0 | 0 | 0 | 19 |
Turkey | 2016 | 0 | 0 | 0 | 55 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kenyon, C. Concentrations of Ciprofloxacin in the World’s Rivers Are Associated with the Prevalence of Fluoroquinolone Resistance in Escherichia coli: A Global Ecological Analysis. Antibiotics 2022, 11, 417. https://doi.org/10.3390/antibiotics11030417
Kenyon C. Concentrations of Ciprofloxacin in the World’s Rivers Are Associated with the Prevalence of Fluoroquinolone Resistance in Escherichia coli: A Global Ecological Analysis. Antibiotics. 2022; 11(3):417. https://doi.org/10.3390/antibiotics11030417
Chicago/Turabian StyleKenyon, Chris. 2022. "Concentrations of Ciprofloxacin in the World’s Rivers Are Associated with the Prevalence of Fluoroquinolone Resistance in Escherichia coli: A Global Ecological Analysis" Antibiotics 11, no. 3: 417. https://doi.org/10.3390/antibiotics11030417