Investigating the Effect of Cross-Modeling in Landslide Susceptibility Mapping
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Input Data
2.4. Preparation of Landslide Conditioning Factors
2.5. Landslide Susceptibility Modeling
2.6. Application of Frequency Ratio Model for Landslide Susceptibility Zonation
2.7. Methods for Model Validation
2.7.1. Index of Relative Landslide Density
2.7.2. Seed Cell Area Index
2.7.3. Map/Model Comparison
3. Results
3.1. The Spatial Relationship Between Landslide Locations and Analyzed Landslide-Controlling Factors
3.2. Landslide Susceptibility Maps
3.3. Evaluation of Landslide Susceptibility Models
3.3.1. Seed Cell Area Index
3.3.2. Index of Relative Landslide Density
3.3.3. Map/Model Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Factors | Class | Pixels in Domain | Pixels of Landslides | FR | ||
---|---|---|---|---|---|---|
No | % | No | % | |||
Curvature | −979.75–−37.75 | 291,592 | 0.75 | 29,939 | 0.92 | 1.23 |
−37.75–−12.75 | 1,687,349 | 4.32 | 229,537 | 7.02 | 1.63 | |
−12.75–−1.75 | 10,372,349 | 26.55 | 983,957 | 30.10 | 1.13 | |
−1.75–6.50 | 22,079,144 | 56.51 | 1,460,148 | 44.66 | 0.79 | |
6.50–22.50 | 3,940,830 | 10.09 | 489,893 | 14.98 | 1.49 | |
22.50–1140.75 | 701,338 | 1.79 | 75,768 | 2.32 | 1.29 | |
Faults Proximity [m] | 0–765.01 | 26,053 | 28.99 | 2190 | 56.93 | 1.96 |
765.01–1586.69 | 25,432 | 28.30 | 1387 | 36.05 | 1.27 | |
1586.69–2521.70 | 18,475 | 20.56 | 225 | 5.85 | 0.28 | |
2521.70–3626.72 | 10,900 | 12.13 | 45 | 1.17 | 0.10 | |
3626.72–5015.07 | 5775 | 6.43 | 0 | 0.00 | 0.00 | |
5015.07–7253.44 | 3223 | 3.59 | 0 | 0.00 | 0.00 | |
Flow Direction | 1–37 | 28,223,380 | 72.23 | 2,615,096 | 79.99 | 1.11 |
37–77 | 6,242,526 | 15.98 | 405,102 | 12.39 | 0.78 | |
77–109 | 13,119 | 0.03 | 59 | 0.00 | 0.05 | |
109–157 | 4,572,240 | 11.70 | 248,918 | 7.61 | 0.65 | |
157–214 | 13,417 | 0.03 | 54 | 0.00 | 0.05 | |
214–255 | 7920 | 0.02 | 13 | 0.00 | 0.02 | |
Lake Proximity [m] | 0–649.33 | 13,232,213 | 33.57 | 901,498 | 27.57 | 0.82 |
649.33–1593.82 | 9,813,224 | 24.90 | 1,046,185 | 31.99 | 1.29 | |
1593.82–2597.33 | 7,082,092 | 17.97 | 776,086 | 23.73 | 1.32 | |
2597.33–3748.42 | 4,586,819 | 11.64 | 378,071 | 11.56 | 0.99 | |
3748.42–5224.17 | 3,010,943 | 7.64 | 145,170 | 4.44 | 0.58 | |
5224.17–7555.87 | 1,691,373 | 4.29 | 23,073 | 0.71 | 0.16 | |
Plan Curvature | −701.06–−45.17 | 24,815 | 0.06 | 2,549 | 0.08 | 1.23 |
−45.17–−22.74 | 131,431 | 0.34 | 16,280 | 0.50 | 1.48 | |
−22.74–−11.53 | 486,180 | 1.24 | 70,428 | 2.15 | 1.73 | |
−11.53–−5.93 | 1,258,467 | 3.22 | 191,990 | 5.87 | 1.82 | |
−5.93–−0.32 | 13,687,923 | 35.03 | 1,180,094 | 36.10 | 1.03 | |
−0.32–734.06 | 23,483,786 | 60.10 | 1,807,901 | 55.30 | 0.92 | |
Precipitations [mm/yr] | 696.41–730.70 | 4,812 | 7.70 | 1,126 | 21.15 | 2.75 |
730.70–756.92 | 6,353 | 10.17 | 467 | 8.77 | 0.86 | |
756.92–780.64 | 7,722 | 12.36 | 721 | 13.54 | 1.10 | |
780.64–801.77 | 9,823 | 15.72 | 287 | 5.39 | 0.34 | |
801.77–820.00 | 12,792 | 20.47 | 995 | 18.69 | 0.91 | |
820.00–845.59 | 20,995 | 33.59 | 1,729 | 32.47 | 0.97 | |
Profile Curvature | −586.48–−33.85 | 57,049 | 0.15 | 4,023 | 0.12 | 0.84 |
−33.85–−15.11 | 680,793 | 1.74 | 67,693 | 2.07 | 1.19 | |
−15.11–−5.75 | 2,364,978 | 6.05 | 297,630 | 9.10 | 1.50 | |
−5.75–3.62 | 31,249,522 | 79.98 | 2,312,749 | 70.74 | 0.88 | |
3.62–22.35 | 4,339,699 | 11.11 | 552,646 | 16.90 | 1.52 | |
22.35–612.45 | 380,561 | 0.97 | 34,501 | 1.06 | 1.08 | |
Roads Proximity [m] | 0–55.03 | 14,884,008 | 37.76 | 1,075,148 | 32.88 | 0.87 |
55.03–119.36 | 10,966,840 | 27.82 | 986,543 | 30.17 | 1.08 | |
119.36–200.64 | 7,044,541 | 17.87 | 701,848 | 21.46 | 1.20 | |
200.64–310.73 | 3,746,656 | 9.51 | 389,038 | 11.90 | 1.25 | |
310.73–461.87 | 1,920,345 | 4.87 | 97,124 | 2.97 | 0.61 | |
461.87–783.52 | 854,274 | 2.17 | 20,382 | 0.62 | 0.29 | |
SEI | −71.26–−17.39 | 2,171,892 | 5.56 | 282,035 | 8.62 | 1.55 |
−17.39–−6.15 | 7,539,677 | 19.30 | 671,358 | 20.53 | 1.06 | |
−6.15–2.13 | 15,204,875 | 38.93 | 742,829 | 22.72 | 0.58 | |
2.13–9.24 | 7,830,238 | 20.05 | 831,721 | 25.43 | 1.27 | |
9.24–19.89 | 5,081,182 | 13.01 | 604,915 | 18.50 | 1.42 | |
19.89–79.67 | 1,228,866 | 3.15 | 137,189 | 4.20 | 1.33 | |
Slope [°] | 0–4.46 | 9,736,000 | 24.93 | 179,319 | 5.49 | 0.22 |
4.46–10.50 | 11,099,321 | 28.43 | 935,294 | 28.61 | 1.01 | |
10.50–16.55 | 9,289,000 | 23.79 | 1,011,335 | 30.93 | 1.30 | |
16.55–23.87 | 5,062,145 | 12.96 | 660,112 | 20.19 | 1.56 | |
23.87–33.73 | 2,788,488 | 7.14 | 366,922 | 11.22 | 1.57 | |
33.73–81.46 | 1,072,347 | 2.75 | 116,260 | 3.56 | 1.29 | |
Streams Proximity [m] | 0–59.67 | 13,517,570 | 34.42 | 1,480,964 | 45.29 | 1.32 |
59.67–127.28 | 10,430,942 | 26.56 | 1,057,532 | 32.34 | 1.22 | |
127.28–206.81 | 7,694,317 | 19.59 | 529,470 | 16.19 | 0.83 | |
206.81–310.66 | 4,816,996 | 12.27 | 163,348 | 5.00 | 0.41 | |
310.66–468.80 | 1,987,450 | 5.06 | 35,587 | 1.09 | 0.22 | |
468.80–821.72 | 824,373 | 2.10 | 2,972 | 0.09 | 0.04 | |
Thrusts Proximity [m] | 0–556.97 | 33,107 | 28.12 | 2,165 | 34.15 | 1.21 |
556.97–1247.63 | 31,171 | 26.48 | 1,038 | 16.37 | 0.62 | |
1247.63–2027.39 | 22,416 | 19.04 | 569 | 8.98 | 0.47 | |
2027.39–2940.84 | 15,252 | 12.96 | 755 | 11.91 | 0.92 | |
2940.84–3987.95 | 9789 | 8.32 | 984 | 15.52 | 1.87 | |
3987.95–5703.44 | 5984 | 5.08 | 828 | 13.06 | 2.57 | |
Aspect [°] | −1–56.82 | 7,170,558 | 18.36 | 376,448 | 11.51 | 0.63 |
56.82–118.86 | 5,320,000 | 13.62 | 332,974 | 10.19 | 0.75 | |
118.86–178.09 | 5,986,026 | 15.33 | 471,931 | 14.44 | 0.94 | |
178.09–235.91 | 7,716,443 | 19.76 | 746,049 | 22.82 | 1.15 | |
235.91–297.95 | 6,014,624 | 15.40 | 705,511 | 21.58 | 1.40 | |
297.95–360 | 6,839,650 | 17.52 | 636,329 | 19.46 | 1.11 | |
0.06–4.15 | 7,790,441 | 19.95 | 963,676 | 29.47 | 1.48 | |
4.15–5.61 | 11,361,374 | 29.09 | 1,126,855 | 34.46 | 1.18 | |
5.61–7.07 | 9,614,984 | 24.62 | 655,065 | 20.03 | 0.81 | |
CTI | 7.07–8.72 | 6,253,701 | 16.01 | 320,192 | 9.79 | 0.61 |
8.72–10.86 | 3,030,027 | 7.76 | 154,055 | 4.71 | 0.61 | |
10.86–24.97 | 1,006,203 | 2.58 | 50,204 | 1.54 | 0.60 | |
−24.08–226.20 | 37,992,784 | 97.28 | 3,146,601 | 96.22 | 0.99 | |
226.2–1227.34 | 907,663 | 2.32 | 102,964 | 3.15 | 1.35 | |
1227.34–3354.77 | 118,145 | 0.30 | 16,996 | 0.52 | 1.72 | |
IMI | 3354.77–7109.06 | 29,122 | 0.07 | 3225 | 0.10 | 1.32 |
7109.056–14,742.77 | 6782 | 0.02 | 230 | 0.01 | 0.41 | |
14,742.77–32,012.48 | 1004 | 0.00 | 31 | 0.00 | 0.37 | |
NDVI | −0.55–−0.11 | 15,232 | 3.90 | 0 | 0.00 | 0.00 |
−0.11–0.12 | 13,774 | 3.53 | 110 | 0.33 | 0.09 | |
0.12–0.35 | 36,583 | 9.37 | 1154 | 3.51 | 0.37 | |
0.35–0.52 | 49,905 | 12.78 | 2473 | 7.53 | 0.59 | |
0.52–0.65 | 124,683 | 31.93 | 9729 | 29.61 | 0.93 | |
0.65–0.85 | 150,351 | 38.50 | 19,388 | 59.01 | 1.53 | |
Elevation [m] | 232.83–285.05 | 10,648,847 | 27.25 | 224,023 | 6.85 | 0.25 |
285.05–329.55 | 6,956,591 | 17.80 | 983,068 | 30.07 | 1.69 | |
329.55–374.20 | 6,966,168 | 17.83 | 879,834 | 26.91 | 1.51 | |
374.20–421.18 | 6,642,407 | 17.00 | 668,929 | 20.46 | 1.20 | |
421.18–475.72 | 5,164,608 | 13.22 | 416,263 | 12.73 | 0.96 | |
475.72–613.87 | 2,693,981 | 6.89 | 97,125 | 2.97 | 0.43 | |
Land Cover | Forest | 613,416 | 35.52 | 72,349 | 55.25 | 1.56 |
Water | 122,254 | 7.08 | 26 | 0.02 | 0.00 | |
Buildings | 342,929 | 19.86 | 22,149 | 16.91 | 0.85 | |
Bare earth (agriculture) | 165,758 | 9.60 | 6456 | 4.93 | 0.51 | |
Agricultural Areas | 482,418 | 27.94 | 29,965 | 22.88 | 0.82 | |
Tectonics | 1—Quaternary Units | 15,545 | 20.52 | 27.00 | 0.42 | 0.02 |
2—Silesian Nappe (Tertiary period—Paleocene) | 27,017 | 35.66 | 2969 | 45.97 | 1.29 | |
3—Silesian Nappe (Upper Cretaceous) | 14,342 | 18.93 | 854 | 13.22 | 0.70 | |
4—Silesian Nappe (Lower Cretaceous) | 482 | 0.64 | 0 | 0.00 | 0.00 | |
5—Under Magura Nappe Dukielskie series (Tertiary period—Palaeogene) | 1827 | 2.41 | 53 | 0.82 | 0.34 | |
6—Grybów and Michalczowej Unit (Tertiary period—Palaeogene) | 9316 | 12.30 | 930 | 14.40 | 1.17 | |
7—Magura Nappe (Tertiary period—Palaeogene) | 7241 | 9.56 | 1625 | 25.16 | 2.63 | |
Lithostratigraphic unit | 3—gravel, sands and clays, ore dregs of the valley bottoms (Quaternary) | 8162 | 10.76 | 18 | 0.28 | 0.03 |
4—clay, slıts with admixture pf sands and alluvial soils, river sands and gasses of flooding and overflow terraces 1–5 m on the riverbank (Quaternary) | 3585 | 4.73 | 0 | 0.00 | 0.00 | |
5—rock rubbles in situ (Quaternary) | 53 | 0.07 | 0 | 0.00 | 0.00 | |
6—sands and weathering clays (Quaternary) | 371 | 0.49 | 4 | 0.06 | 0.13 | |
7—clays, sands, clays, sometimes with congregational and diluvial rubble (Quaternary) | 277 | 0.37 | 0 | 0.00 | 0.00 | |
9—loess-like clays (Quaternary) | 139 | 0.18 | 0 | 0.00 | 0.00 | |
10—gravel, sands and river clays, erosive and storage terraces 6–13 m on the riverbank (Quaternary) | 2634 | 3.47 | 5 | 0.08 | 0.02 | |
11—gravel, sands and river clays, erosive and storage terraces 15–30 m on the riverbank (Quaternary) | 228 | 0.30 | 0 | 0.00 | 0.00 | |
12—boulders, gravel and water type sand (Quaternary) | 96 | 0.13 | 0 | 0.00 | 0.00 | |
22—shale and sandstones (Tertiary period—Paleocene) | 1771 | 2.34 | 54 | 0.84 | 0.36 | |
23—darkish limestone(Tertiary period—Paleocene) | 21 | 0.03 | 0 | 0.00 | 0.00 | |
24—medium-thick and semi-thin sandstone and shale (Tertiary period—Paleocene) | 12,740 | 16.80 | 457 | 7.08 | 0.42 | |
25—shale, sandstone, chert, marl, and conglomerate-menilite layers (Tertiary period—Paleocene) | 675 | 0.89 | 90 | 1.39 | 1.57 | |
26—globigerina marl (Tertiary period—Paleocene) | 85 | 0.11 | 38 | 0.59 | 5.25 | |
27—sandstone and shale–hieroglyph layers (Tertiary period—Paleocene) | 3029 | 3.99 | 1096 | 16.97 | 4.25 | |
28—sandstone and shale—heavy type sandstone (Tertiary period—Paleocene) | 2871 | 3.79 | 517 | 8.01 | 2.11 | |
29—shale with thick-bedded and medium-bedded sandstone inserts (Tertiary period—Paleocene) | 637 | 0.84 | 106 | 1.64 | 1.95 | |
30—sandstone and conglomerate—upper Istebna sandstone (Tertiary period—Paleocene) | 1308 | 1.72 | 111 | 1.72 | 1.00 | |
31—shale with thin-bedded sandstone inserts (Tertiary period—Paleocene) | 2430 | 3.20 | 309 | 4.78 | 1.49 | |
32—Istebna shale with lower layers from upper Istebna (Upper Cretaceous) | 1510 | 1.99 | 191 | 2.96 | 1.49 | |
33—sandstone and conglomerate—lower Istebna layers (Upper Cretaceous) | 11,383 | 15.01 | 630 | 9.76 | 0.65 | |
34—thin, thick and medium-bedded sandstone, seated conglomerate—unseparated Godulskie layers (Upper Cretaceous) | 2959 | 3.90 | 224 | 3.47 | 0.89 | |
39—Rzewów shales (Lower Cretaceous) | 58 | 0.08 | 0 | 0.00 | 0.00 | |
40—sandstone-Grodziskie layers (Lower Cretaceous) | 119 | 0.16 | 0 | 0.00 | 0.00 | |
41—shale with thin-bedded sandstone inserts—upper Cieszyn shales (Lower Cretaceous) | 305 | 0.40 | 0 | 0.00 | 0.00 | |
42—thick-bedded sandstone—Cergowa sandstone (Tertiary period—Palaeogene) | 1406 | 1.85 | 53 | 0.82 | 0.44 | |
43—shales menilite and lower Cergowa mar (Tertiary period—Palaeogene) | 341 | 0.45 | 0 | 0.00 | 0.00 | |
44—shales or shale and sandstone—hieroglyphs and green shale (Tertiary period—Palaeogene) | 80 | 0.11 | 0 | 0.00 | 0.00 | |
45—tylawskie limestone (Tertiary period—Palaeogene) | 4650 | 6.13 | 490 | 7.59 | 1.24 | |
46—Sandstone and shale (Tertiary period—Palaeogene) | 51 | 0.07 | 0 | 0.00 | 0.00 | |
47—Shale, chert, sandstone—Grybowskie layers (Tertiary period—Palaeogene) | 3468 | 4.57 | 205 | 3.17 | 0.69 | |
48—Organodetic limestone and sandstone—Luzańskie lımestone and Michalczowej sandstone (Tertiary period—Palaeogene) | 325 | 0.43 | 36 | 0.56 | 1.30 | |
49—marn shale, sandstone, lower Grybowskıe marl (Tertiary period—Palaeogene) | 284 | 0.37 | 0 | 0.00 | 0.00 | |
50—shale and sandstone–hieroglyph layers (Tertiary period—Palaeogene) | 391 | 0.52 | 199 | 3.08 | 5.98 | |
51—spotted shale (Tertiary period—Palaeogene) | 147 | 0.19 | 0 | 0.00 | 0.00 | |
52—thin and medium-bedded sandstones and shales—layers of Jawoveret/inoceramic in biotite facies (Tertiary period—Palaeogene) | 60 | 0.08 | 0 | 0.00 | 0.00 | |
53—sandstone and shale-Magura layers in glauconite faction (Tertiary period—Palaeogene) | 151 | 0.20 | 0 | 0.00 | 0.00 | |
56—chert, Pelic limestone (Tertiary period—Palaeogene) | 562 | 0.74 | 0 | 0.00 | 0.00 | |
59—Ciężkowice sandstones in the Magura sandstone form of Wojakowa (Tertiary period—Palaeogene) | 835 | 1.10 | 0 | 0.00 | 0.00 | |
60—spotted shale (Tertiary period—Palaeogene) | 779 | 1.03 | 8 | 0.12 | 0.12 | |
62—medium and thin-bedded sandstones and shales—layers of Kanina (Tertiary period—Palaeogene) | 1783 | 2.35 | 772 | 11.95 | 5.08 | |
63—marl and spotted shale (Tertiary period—Palaeogene) | 3071 | 4.05 | 845 | 13.08 | 3.23 | |
Soil Suitability | 2—medium grassland complex | 73,017 | 4.65 | 5,034 | 3.83 | 0.82 |
3—grassland weak and very weak | 469 | 0.03 | 171 | 0.13 | 4.35 | |
8—strong grain and fodder complex | 69,232 | 4.41 | 4639 | 3.53 | 0.80 | |
10—mountains wheat complex | 188,272 | 12.00 | 1078 | 0.82 | 0.07 | |
11—mountainous grain complex | 573,446 | 36.54 | 52,866 | 40.20 | 1.10 | |
13—oat fodder mountainous complex | 4801 | 0.31 | 483 | 0.37 | 1.20 | |
14—Arable soils intended for grassland | 10,277 | 0.65 | 4679 | 3.56 | 5.43 | |
20—forest | 264,201 | 16.83 | 46,219 | 35.14 | 2.09 | |
21—barren | 9995 | 0.64 | 0 | 0.00 | 0.00 | |
23—forest clay sands | 137,252 | 8.75 | 11,827 | 8.99 | 1.03 | |
24—agriculturally unsuitable soils suitable for afforestation | 1055 | 0.07 | 673 | 0.51 | 7.61 | |
25-agricultural areas | 3,549 | 0.23 | 416 | 0.32 | 1.40 | |
26—water | 215,609 | 13.74 | 1695 | 1.29 | 0.09 | |
33—defective wheat complex | 18,236 | 1.16 | 1730 | 1.32 | 1.13 |
Appendix B
Factors | Class | Pixels in Domain | Pixels of Landslides | FR | ||
---|---|---|---|---|---|---|
No | % | No | % | |||
Curvature | −979.75–−37.75 | 291,592 | 0.75 | 23,642 | 1.12 | 1.51 |
−37.75–−12.75 | 1,687,349 | 4.32 | 168,559 | 8.02 | 1.86 | |
−12.75–−1.75 | 10,372,349 | 26.55 | 635,081 | 30.21 | 1.14 | |
−1.75–6.50 | 22,079,144 | 56.51 | 880,022 | 41.86 | 0.74 | |
6.50–22.50 | 3,940,830 | 10.09 | 334,674 | 15.92 | 1.58 | |
22.50–1140.75 | 701,338 | 1.79 | 60,341 | 2.87 | 1.60 | |
Faults Proximity [m] | 0–765.01 | 26,053 | 28.99 | 660 | 20.65 | 0.71 |
765.01–1586.69 | 25,432 | 28.30 | 749 | 23.44 | 0.83 | |
1586.69–2521.70 | 18,475 | 20.56 | 1227 | 38.39 | 1.87 | |
2521.70–3626.72 | 10,900 | 12.13 | 498 | 15.58 | 1.28 | |
3626.72–5015.07 | 5775 | 6.43 | 62 | 1.94 | 0.30 | |
5015.07–7253.44 | 3223 | 3.59 | 0 | 0.00 | 0.00 | |
Flow Direction | 1–37 | 28,223,380 | 72.23 | 1,674,906 | 79.67 | 1.10 |
37–77 | 6,242,526 | 15.98 | 179,941 | 8.56 | 0.54 | |
77–109 | 13,119 | 0.03 | 33 | 0.00 | 0.05 | |
109–157 | 4,572,240 | 11.70 | 247,419 | 11.77 | 1.01 | |
157–214 | 13,417 | 0.03 | 20 | 0.00 | 0.03 | |
214–255 | 7920 | 0.02 | 0 | 0.00 | 0.00 | |
Lake Proximity [m] | 0–649.33 | 13,232,213 | 33.57 | 1,004,964 | 47.79 | 1.42 |
649.33–1593.82 | 9,813,224 | 24.90 | 730,394 | 34.73 | 1.40 | |
1593.82–2597.33 | 7,082,092 | 17.97 | 353,360 | 16.80 | 0.94 | |
2597.33–3748.42 | 4,586,819 | 11.64 | 14,066 | 0.67 | 0.06 | |
3748.42–5224.17 | 3,010,943 | 7.64 | 33 | 0.00 | 0.00 | |
5224.17–7555.87 | 1,691,373 | 4.29 | 0 | 0.00 | 0.00 | |
Planar Curvature | −701.06–−45.17 | 24,815 | 0.06 | 2138 | 0.10 | 1.60 |
−45.17–−22.74 | 131,431 | 0.34 | 12,925 | 0.61 | 1.83 | |
−22.74–−11.53 | 486,180 | 1.24 | 52,705 | 2.51 | 2.01 | |
−11.53–−5.93 | 1,258,467 | 3.22 | 135,593 | 6.45 | 2.00 | |
−5.93–−0.32 | 13,687,923 | 35.03 | 747,311 | 35.55 | 1.01 | |
−0.32–734.06 | 23,483,786 | 60.10 | 1,151,647 | 54.78 | 0.91 | |
Precipitations [mm/yr] | 696.41–730.70 | 4812 | 7.70 | 9 | 0.26 | 0.03 |
730.70–756.92 | 6353 | 10.17 | 285 | 8.23 | 0.81 | |
756.92–780.64 | 7722 | 12.36 | 0 | 0.00 | 0.00 | |
780.64–801.77 | 9823 | 15.72 | 817 | 23.58 | 1.50 | |
801.77- 820.00 | 12,792 | 20.47 | 1427 | 41.18 | 2.01 | |
820.00–845.59 | 20,995 | 33.59 | 927 | 26.75 | 0.80 | |
Profile Curvature | −586.48–−33.85 | 57,049 | 0.15 | 3716 | 0.18 | 1.21 |
−33.85–−15.11 | 680,793 | 1.74 | 52,138 | 2.48 | 1.42 | |
−15.11–−5.75 | 2,364,978 | 6.05 | 211,106 | 10.04 | 1.66 | |
−5.75–3.62 | 31,249,522 | 79.98 | 1,417,790 | 67.44 | 0.84 | |
3.62–22.35 | 4,339,699 | 11.11 | 390,276 | 18.56 | 1.67 | |
22.35–612.45 | 380,561 | 0.97 | 27,293 | 1.30 | 1.33 | |
Roads Proximity [m] | 0–55.03 | 14,884,008 | 37.76 | 724,844 | 34.47 | 0.91 |
55.03–119.36 | 10,966,840 | 27.82 | 705,339 | 33.54 | 1.21 | |
119.36–200.64 | 7,044,541 | 17.87 | 461,458 | 21.94 | 1.23 | |
200.64–310.73 | 3,746,656 | 9.51 | 165,853 | 7.89 | 0.83 | |
310.73–461.87 | 1,920,345 | 4.87 | 42,200 | 2.01 | 0.41 | |
461.87–783.52 | 854,274 | 2.17 | 3123 | 0.15 | 0.07 | |
SEI | −71.26–−17.39 | 2,171,892 | 5.56 | 171,763 | 8.17 | 1.47 |
−17.39–−6.15 | 7,539,677 | 19.30 | 330,655 | 15.73 | 0.81 | |
−6.15–2.13 | 15,204,875 | 38.93 | 407,265 | 19.37 | 0.50 | |
2.13–9.24 | 7,830,238 | 20.05 | 536,617 | 25.52 | 1.27 | |
9.24–19.89 | 5,081,182 | 13.01 | 475,949 | 22.64 | 1.74 | |
19.89–79.67 | 1,228,866 | 3.15 | 180,188 | 8.57 | 2.72 | |
Slope [°] | 0.000074–4.46 | 9,736,000 | 24.93 | 82,122 | 3.91 | 0.16 |
4.46–10.50 | 11,099,321 | 28.43 | 494,938 | 23.54 | 0.83 | |
10.50–16.55 | 9,289,000 | 23.79 | 582,204 | 27.69 | 1.16 | |
16.55–23.87 | 50,621,45 | 12.96 | 459,570 | 21.86 | 1.69 | |
23.87–33.73 | 2,788,488 | 7.14 | 355,980 | 16.93 | 2.37 | |
33.73–81.46 | 1,072,347 | 2.75 | 127,466 | 6.06 | 2.21 | |
Streams Proximity [m] | 0–59.67 | 13,517,570 | 34.42 | 942,196 | 44.85 | 1.30 |
59.67–127.28 | 10,430,942 | 26.56 | 641,522 | 30.54 | 1.15 | |
127.28–206.81 | 7,694,317 | 19.59 | 330,290 | 15.72 | 0.80 | |
206.81–310.66 | 4,816,996 | 12.27 | 144,706 | 6.89 | 0.56 | |
310.66–468.80 | 1,987,450 | 5.06 | 41,752 | 1.99 | 0.39 | |
468.80–821.72 | 824,373 | 2.10 | 392 | 0.02 | 0.01 | |
Thrusts Proximity [m] | 0–556.97 | 33,107 | 28.12 | 1537 | 36.34 | 1.29 |
556.97–1247.63 | 31,171 | 26.48 | 1306 | 30.88 | 1.17 | |
1247.63–2027.39 | 22,416 | 19.04 | 917 | 21.68 | 1.14 | |
2027.39–2940.84 | 15,252 | 12.96 | 348 | 8.23 | 0.64 | |
2940.84–3987.95 | 9789 | 8.32 | 121 | 2.86 | 0.34 | |
3987.95–5703.44 | 5984 | 5.08 | 0 | 0.00 | 0.00 | |
Aspect [°] | −1–56.82 | 7,170,558 | 18.36 | 280,161 | 13.33 | 0.73 |
56.82–118.86 | 5,320,000 | 13.62 | 458,783 | 21.82 | 1.60 | |
118.86–178.09 | 5,986,026 | 15.33 | 561,221 | 26.70 | 1.74 | |
178.09–235.91 | 7,716,443 | 19.76 | 373,687 | 17.78 | 0.90 | |
235.91–297.95 | 6,014,624 | 15.40 | 229,866 | 10.93 | 0.71 | |
297.95–360 | 6,839,650 | 17.52 | 198,562 | 9.45 | 0.54 | |
CTI | 0.06–4.15 | 7,790,441 | 19.95 | 669,369 | 31.84 | 1.60 |
4.15–5.61 | 11,361,374 | 29.09 | 690,270 | 32.83 | 1.13 | |
5.61–7.07 | 9,614,984 | 24.62 | 408,081 | 19.41 | 0.79 | |
7.07–8.72 | 6,253,701 | 16.01 | 201,824 | 9.60 | 0.60 | |
8.72–10.86 | 3,030,027 | 7.76 | 97,503 | 4.64 | 0.60 | |
10.86–24.97 | 1,006,203 | 2.58 | 35,390 | 1.68 | 0.65 | |
IMI | −24.08–226.20 | 37,992,784 | 97.28 | 2,014,350 | 95.81 | 0.98 |
226.2–1227.34 | 907,663 | 2.32 | 69,553 | 3.31 | 1.42 | |
1227.34–3354.77 | 118,145 | 0.30 | 13,966 | 0.66 | 2.20 | |
3354.77–7109.06 | 29,122 | 0.07 | 3761 | 0.18 | 2.40 | |
7109.056–14,742.77 | 6782 | 0.02 | 717 | 0.03 | 1.96 | |
14,742.77–32,012.48 | 1004 | 0.00 | 72 | 0.00 | 1.33 | |
NDVI | −0.55–−0.11 | 15,232 | 3.90 | 0 | 0.00 | 0.00 |
−0.11–0.12 | 13,774 | 3.53 | 0 | 0.00 | 0.00 | |
0.12–0.35 | 36,583 | 9.37 | 474 | 2.25 | 0.24 | |
0.35–0.52 | 49,905 | 12.78 | 1297 | 6.16 | 0.48 | |
0.52–0.65 | 124,683 | 31.93 | 5938 | 28.21 | 0.88 | |
0.65–0.85 | 150,351 | 38.50 | 13,342 | 63.38 | 1.65 | |
Elevation [m] | 232.83–285.05 | 10,648,847 | 27.25 | 433,742 | 20.63 | 0.76 |
285.05–329.55 | 6,956,591 | 17.80 | 862,559 | 41.03 | 2.30 | |
329.55–374.20 | 6,966,168 | 17.83 | 528,893 | 25.16 | 1.41 | |
374.20–421.18 | 6,642,407 | 17.00 | 164,675 | 7.83 | 0.46 | |
421.18–475.72 | 5,164,608 | 13.22 | 66,068 | 3.14 | 0.24 | |
475.72–613.87 | 2,693,981 | 6.89 | 46,382 | 2.21 | 0.32 | |
Land Cover | Forest | 613,416 | 35.52 | 72,349 | 55.25 | 1.56 |
Water | 122,254 | 7.08 | 26 | 0.02 | 0.00 | |
Buildings | 342,929 | 19.86 | 22,149 | 16.91 | 0.85 | |
Bare earth (agriculture) | 165,758 | 9.60 | 6456 | 4.93 | 0.51 | |
Agricultural Areas | 482,418 | 27.94 | 29,965 | 22.88 | 0.82 | |
Tectonics | 1—Quaternary Units | 15,545 | 20.52 | 27.00 | 0.42 | 0.02 |
2—Silesian Nappe (Tertiary period—Paleocene) | 27,017 | 35.66 | 2,969 | 45.97 | 1.29 | |
3—Silesian Nappe (Upper Cretaceous) | 14,342 | 18.93 | 854 | 13.22 | 0.70 | |
4—Silesian Nappe (Lower Cretaceous) | 482 | 0.64 | 0 | 0.00 | 0.00 | |
5—Under Magura Nappe Dukielskie series (Tertiary period—Palaeogene) | 1827 | 2.41 | 53 | 0.82 | 0.34 | |
6—Grybów and Michalczowej Unit (Tertiary period—Palaeogene) | 9316 | 12.30 | 930 | 14.40 | 1.17 | |
7—Magura Nappe (Tertiary period—Palaeogene) | 7241 | 9.56 | 1625 | 25.16 | 2.63 | |
Lithostratigraphic unit | 3—gravel, sands and clays, ore dregs of the valley bottoms (Quaternary) | 8162 | 10.76 | 18 | 0.28 | 0.03 |
4—clay, slıts with admixture pf sands and alluvial soils, river sands and gasses of flooding and overflow terraces 1–5 m on the riverbank (Quaternary) | 3585 | 4.73 | 0 | 0.00 | 0.00 | |
5—rock rubbles in situ(Quaternary) | 53 | 0.07 | 0 | 0.00 | 0.00 | |
6—sands and weathering clays(Quaternary) | 371 | 0.49 | 4 | 0.06 | 0.13 | |
7—clays, sands, clays, sometimes with congregational and diluvial rubble (Quaternary) | 277 | 0.37 | 0 | 0.00 | 0.00 | |
9—loess-like clays(Quaternary) | 139 | 0.18 | 0 | 0.00 | 0.00 | |
10—gravel, sands and river clays, erosive and storage terraces 6–13 m on the riverbank (Quaternary) | 2634 | 3.47 | 5 | 0.08 | 0.02 | |
11—gravel, sands and river clays, erosive and storage terraces. 15–30 m (Quaternary)on the riverbank (Quaternary) | 228 | 0.30 | 0 | 0.00 | 0.00 | |
12—boulders, gravel and water type sand (Quaternary) | 96 | 0.13 | 0 | 0.00 | 0.00 | |
22—shale and sandstones (Tertiary period—Paleocene) | 1771 | 2.34 | 54 | 0.84 | 0.36 | |
23—darkish limestone (Tertiary period—Paleocene) | 21 | 0.03 | 0 | 0.00 | 0.00 | |
24—medium-thick and semi-thin sandstone and shale (Tertiary period—Paleocene) | 12,740 | 16.80 | 457 | 7.08 | 0.42 | |
25—shale, sandstone, chert, marl, and conglomerate-menilite layers (Tertiary period—Paleocene) | 675 | 0.89 | 90 | 1.39 | 1.57 | |
26—globigerina marl (Tertiary period—Paleocene) | 85 | 0.11 | 38 | 0.59 | 5.25 | |
27—sandstone and shale–hieroglyph layers (Tertiary period—Paleocene) | 3029 | 3.99 | 1096 | 16.97 | 4.25 | |
28—sandstone and shale—heavy type sandstone (Tertiary period—Paleocene) | 2871 | 3.79 | 517 | 8.01 | 2.11 | |
29—shale with thick-bedded and medium-bedded sandstone inserts (Tertiary period—Paleocene) | 637 | 0.84 | 106 | 1.64 | 1.95 | |
30—sandstone and conglomerate—upper Istebna sandstone (Tertiary period—Paleocene) | 1308 | 1.72 | 111 | 1.72 | 1.00 | |
31—shale with thin-bedded sandstone inserts (Tertiary period—Paleocene) | 2430 | 3.20 | 309 | 4.78 | 1.49 | |
32—Istebna shale with lower layers from upper Istebna (Upper Cretaceous) | 1510 | 1.99 | 191 | 2.96 | 1.49 | |
33—sandstone and conglomerate—lower Istebna layers (Upper Cretaceous) | 11,383 | 15.01 | 630 | 9.76 | 0.65 | |
34—thin, thick and medium-bedded sandstone, seated conglomerate—unseparated Godulskie layers (Upper Cretaceous) | 2959 | 3.90 | 224 | 3.47 | 0.89 | |
39—Rzewów shales (Lower Cretaceous) | 58 | 0.08 | 0 | 0.00 | 0.00 | |
40—sandstone-Grodziskie layers (Lower Cretaceous) | 119 | 0.16 | 0 | 0.00 | 0.00 | |
41—shale with thin-bedded sandstone inserts—upper Cieszyn shales (Lower Cretaceous) | 305 | 0.40 | 0 | 0.00 | 0.00 | |
42—thick-bedded sandstone— Cergowa sandstone (Tertiary period—Palaeogene) | 1406 | 1.85 | 53 | 0.82 | 0.44 | |
43—shales menilite and lower Cergowa mar (Tertiary period—Palaeogene) | 341 | 0.45 | 0 | 0.00 | 0.00 | |
44—shales or shale and sandstone—hieroglyphs and green shale (Tertiary period—Palaeogene) | 80 | 0.11 | 0 | 0.00 | 0.00 | |
45—tylawskie limestone (Tertiary period—Palaeogene) | 4650 | 6.13 | 490 | 7.59 | 1.24 | |
46—Sandstone and shale (Tertiary period—Palaeogene) | 51 | 0.07 | 0 | 0.00 | 0.00 | |
47—Shale, chert, sandstone—Grybowskie layers (Tertiary period—Palaeogene) | 3468 | 4.57 | 205 | 3.17 | 0.69 | |
48—Organodetic limestone and sandstone—Luzańskie lımestone and Michalczowej sandstone (Tertiary period—Palaeogene) | 325 | 0.43 | 36 | 0.56 | 1.30 | |
49—marn shale, sandstone, lower Grybowskıe marl (Tertiary period—Palaeogene) | 284 | 0.37 | 0 | 0.00 | 0.00 | |
50—shale and sandstone–hieroglyph layers (Tertiary period—Palaeogene) | 391 | 0.52 | 199 | 3.08 | 5.98 | |
51—spotted shale (Tertiary period—Palaeogene) | 147 | 0.19 | 0 | 0.00 | 0.00 | |
52—thin and medium-bedded sandstones and shales—layers of Jawoveret/inoceramic in biotite facies (Tertiary period—Palaeogene) | 60 | 0.08 | 0 | 0.00 | 0.00 | |
53—sandstone and shale-Magura layers in glauconite faction (Tertiary period—Palaeogene) | 151 | 0.20 | 0 | 0.00 | 0.00 | |
56—chert, Pelic limestone (Tertiary period—Palaeogene) | 562 | 0.74 | 0 | 0.00 | 0.00 | |
59—Ciężkowice sandstones in the Magura sandstone form of Wojakowa (Tertiary period—Palaeogene) | 835 | 1.10 | 0 | 0.00 | 0.00 | |
60—spotted shale (Tertiary period—Palaeogene) | 779 | 1.03 | 8 | 0.12 | 0.12 | |
62—medium and thin-bedded sandstones and shales—layers of Kanina (Tertiary period—Palaeogene) | 1783 | 2.35 | 772 | 11.95 | 5.08 | |
63—marl and spotted shale (Tertiary period—Palaeogene) | 3071 | 4.05 | 845 | 13.08 | 3.23 | |
Soil suitability | 2—medium grassland complex | 73,017 | 4.65 | 7861 | 9.29 | 2.00 |
3—grassland weak and very weak | 469 | 0.03 | 0 | 0.00 | 0.00 | |
8—strong grain and fodder complex | 69,232 | 4.41 | 4494 | 5.31 | 1.20 | |
10—mountains wheat complex | 188,272 | 12.00 | 3672 | 4.34 | 0.36 | |
11—mountainous grain complex | 573,446 | 36.54 | 28,503 | 33.68 | 0.92 | |
13—oat fodder mountainous complex | 4801 | 0.31 | 134 | 0.16 | 0.52 | |
14—Arable soils intended for grassland | 10,277 | 0.65 | 1328 | 1.57 | 2.40 | |
20—forest | 264,201 | 16.83 | 21,568 | 25.49 | 1.51 | |
21—barren | 9995 | 0.64 | 96 | 0.11 | 0.18 | |
23—forest clay sands | 137,252 | 8.75 | 12,645 | 14.94 | 1.71 | |
24—agriculturally unsuitable soils suitable for afforestation | 1055 | 0.07 | 0 | 0.00 | 0.00 | |
25—agricultural areas | 3549 | 0.23 | 0 | 0.00 | 0.00 | |
26—water | 215,609 | 13.74 | 1099 | 1.30 | 0.09 | |
33—defective wheat complex | 18,236 | 1.16 | 3223 | 3.81 | 3.28 |
References
- Cruden, D.M.; Varnes, D.J. Landslide types and processes. In Landslides: Investigation and Mitigation; Turner, A.K., Schuster, R.L., Eds.; Transportation Research Board: Washington, DC, USA, 1996. [Google Scholar]
- Lin, L.; Lin, Q.; Wang, Y. Landslide susceptibility mapping on a global scale using the method of logistic regression. Nat. Hazards Earth Syst. Sci. 2017, 18, 1411–1424. [Google Scholar] [CrossRef] [Green Version]
- Arabameri, A.; Pradhan, B.; Rezaei, K.; Sohrabi, M.; Kalantari, Z. GIS-based landslide susceptibility mapping using numerical risk factor bivariate model and its ensemble with linear multivariate regression and boosted regression tree algorithms. J. Mt. Sci. 2019, 16, 595–618. [Google Scholar] [CrossRef]
- Nicodemo, G.; Peduto, D.; Ferlisi, S.; Gullà, G.; Borrelli, L.; Fornaro, G.; Reale, D. Analysis of building vulnerability to slow-moving landslides via A-DInSAR and damage survey data. In Advancing Culture of Living with Landslides; Mikos, M., Tiwari, Y., Sassa, Y., Eds.; Springer: Cham, Switzerland, 2017; pp. 889–907. [Google Scholar] [CrossRef]
- Borrelli, L.; Nicodemo, G.; Ferlisi, S.; Peduto, D.; Di Nocera, S.; Gullà, G. Geology, slow-moving landslides, and damages to buildings in the Verbicaro area (North-Western Calabria Region, Southern Italy). J. Maps 2018, 14, 32–44. [Google Scholar] [CrossRef]
- Nadim, F.; Kjekstad, O.; Peduzzi, P.; Herold, C.; Jaedicke, C. Global landslide and avalanche hotspots. Landslides 2006, 3, 159–173. [Google Scholar] [CrossRef]
- Poprawa, D.; Rączkowski, W. Osuwiska Karpat. Przegląd Geol. 2014, 51, 685–692. (In Polish) [Google Scholar]
- Borkowski, A.; Perski, Z.; Wojciechowski, T.; Józków, G.; Wójcik, A. Landslides mapping in Roznów Lake vicinity, Poland using airborne laser scanning data. Acta Geodynamica Geomater. 2011, 8, 325–333. [Google Scholar]
- Wojciechowski, T.; Borkowski, A.; Perski, Z.; Wójcik, A. Airborne laser scanning data in landslide studies at the example of the Zbyszyce landslide (Outer Carpathians). Przegląd Geol. 2012, 60, 95–102. (In Polish) [Google Scholar]
- Cascini, L.; Ciurleo, M.; Di Nocera, S.; Gullà, G. A new–old approach for shallow landslide analysis and susceptibility zoning in fine-grained weathered soils of southern Italy. Geomorphology 2015, 241, 371–381. [Google Scholar] [CrossRef]
- Ciurleo, M.; Mandaglio, M.C.; Moraci, N. Landslide susceptibility assessment by TRIGRS in a frequently affected shallow instability area. Landslides 2019, 16, 175–188. [Google Scholar] [CrossRef]
- Guzzetti, F. Landslide Hazard and Risk Assessment. Ph.D. Thesis, Mathematisch-Naturwissenschaftlichen Fakultät der Rheinischen Friedrich-Wilhelms-University of Bonn, Bonn, Germany, 2006. [Google Scholar]
- Arabameri, A.; Saha, S.; Roy, J.; Chen, W.; Blaschke, T.; Tien Bui, D. Landslide susceptibility evaluation and management using different machine learning methods in the Gallicash River Watershed, Iran. Remote Sens. 2020, 12, 475. [Google Scholar] [CrossRef] [Green Version]
- Pawluszek, K.; Borkowski, A. Impact of DEM-derived factors and analytical hierarchy process on landslide susceptibility mapping in the region of Rożnów Lake, Poland. Nat. Hazards 2017, 86, 919–952. [Google Scholar] [CrossRef] [Green Version]
- Paudel, U.; Oguchi, T.; Hayakawa, Y. Multi-resolution landslide susceptibility analysis using a DEM and random forest. Int. J. Geosci. 2016, 7, 726–743. [Google Scholar] [CrossRef] [Green Version]
- Saadatkhah, N.; Kassim, A.; Lee, L.M. Qualitative and quantitative landslide susceptibility assessments in Hulu Kelang area, Malaysia. Electron. J. Geotech. Eng. 2014, 19, 545–563. [Google Scholar]
- Ciurleo, M.; Mandaglio, M.C.; Moraci, N.; Pitasi, A. A method to evaluate debris flow triggering and propagation by numerical analyses. In Geotechnical Research for Land Protection and Development. CNRIG 2019. Lecture Notes in Civil Engineering; Calvetti, F., Cotecchia, F., Galli, A., Jommi, C., Eds.; Springer: Cham, Switzerland, 2019; Volume 40, pp. 33–41. [Google Scholar]
- Chen, W.; Xie, X.; Peng, J.; Shahabi, H.; Hong, H.; Bui, D.T.; Zhu, A.X. GIS-based landslide susceptibility evaluation using a novel hybrid integration approach of bivariate statistical based random forest method. Catena 2018, 164, 135–149. [Google Scholar] [CrossRef]
- Aditian, A.; Kubota, T.; Shinohara, Y. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology 2018, 318, 101–111. [Google Scholar] [CrossRef]
- Razavizadeh, S.; Solaimani, K.; Massironi, M.; Kavian, A. Mapping landslide susceptibility with frequency ratio, statistical index, and weights of evidence models: A case study in northern Iran. Environ. Earth Sci. 2017, 76, 499. [Google Scholar] [CrossRef]
- Lee, S.; Oh, H.J. Landslide susceptibility prediction using evidential belief function, weight of evidence and artificial neural network models. Korean J. Remote Sens. 2019, 35, 299–316. [Google Scholar]
- Shirani, K.; Pasandi, M.; Arabameri, A. Landslide susceptibility assessment by dempster–shafer and index of entropy models, Sarkhoun basin, southwestern Iran. Nat. Hazards 2018, 93, 1379–1418. [Google Scholar] [CrossRef]
- Kanungo, D.P.; Arora, M.K.; Sarkar, S.; Gupta, R.P. A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85, 347–366. [Google Scholar] [CrossRef]
- Chen, W.; Pourghasemi, H.R.; Naghibi, S.A. A comparative study of landslide susceptibility maps produced using support vector machine with different kernel functions and entropy data mining models in China. Bull. Eng. Geol. Environ. 2018, 77, 647–664. [Google Scholar] [CrossRef]
- Huang, Y.; Zhao, L. Review on landslide susceptibility mapping using support vector machines. Catena 2018, 165, 529. [Google Scholar] [CrossRef]
- Zhang, K.; Wu, X.; Niu, R.; Yang, K.; Zhao, L. The assessment of landslide susceptibility mapping using random forest and decision tree methods in the Three Gorges Reservoir area, China. Environ. Earth Sci. 2018, 76, 1–20. [Google Scholar] [CrossRef]
- Gudiyangada Nachappa, T.; Kienberger, S.; Meena, S.R.; Hölbling, D.; Blaschke, T. Comparison and validation of per-pixel and object-based approaches for landslide susceptibility mapping. Geomat. Nat. Hazards Risk 2020, 11, 572–600. [Google Scholar]
- Javier, D.N.; Kumar, L. Frequency ratio landslide susceptibility estimation in a tropical mountain region. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Van Den Eeckhaut, M.; Hervás, J. State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 2012, 139. [Google Scholar] [CrossRef]
- Cieszkowski, M.; Waśkowska, A. Castles from the Rożnowskie and Czchowskie lakes as geotouristic lapidaria and the role of the Istebna sandstones in their formation. Geoturystyka 2010, 21, 3–18. (In Polish) [Google Scholar]
- Hungr, O.; Leroueil, S.; Picarelli, L. The Varnes classification of landslide types, an update. Landslides 2014, 11, 167–194. [Google Scholar] [CrossRef]
- Dai, F.C.; Xu, C.; Yao, X.; Xu, L.; Tu, X.B.; Gong, Q.M. Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. J. Asian Earth Sci. 2011, 40, 883–895. [Google Scholar] [CrossRef]
- Dou, J.; Paudel, U.; Oguchi, T.; Uchiyama, S.; Hayakavva, Y.S. Shallow and deep-seated landslide differentiation using support vector machines: A case study of the Chuetsu Area, Japan. Terr. Atmos. Ocean. Sci. 2015, 26, 227–239. [Google Scholar] [CrossRef] [Green Version]
- Roering, J.J.; Schmidt, K.M.; Stock, J.D.; Dietrich, W.E.; Montgomery, D.R. Shallow landsliding, root reinforcement, and the spatial distribution of trees in the Oregon Coast Range. Can. Geotech. J. 2003, 40, 237–253. [Google Scholar] [CrossRef] [Green Version]
- Bąk, M.; Długosz, M.; Gorczyca, E.; Kasina, Kozioł, T.; Wrońska-Wałach, D.; Wyderski, P. Map of Landslides and Areas Threatened by Mass Movements on a Scale of 1: 10000 Łososina Dolna Commune, Nowosądeckie County, Małpolskie Municipality; Ministerstwo Środowiska: Warszawa, Poland, 2011. (In Polish) [Google Scholar]
- Wójcik, A.; Wojciechowski, T.; Wódka, M.; Krzysiek, U. Map of Landslides and Areas Threatened by Mass Movements on a Scale of 1: 10000 Gróek nad Dunajcem Commune, Nowosądeckie County, Małpolskie Municipality; Ministerstwo Środowiska: Warszawa, Poland, 2015. (In Polish) [Google Scholar]
- Gorczyca, E.; Wrońska-Wałach, D. Explanations to the Landslides Inventory Maps and Areas Prone to Mass Movements in the Scale of 1:10000. Municipality of Łososina Dolna, District: Nowosądecki, Province: Małopolskie; Ministerstwo Środowiska: Warszawa, Poland, 2011. (In Polish) [Google Scholar]
- Wójcik, A.; Wojciechowski, T.; Wódka, M.; Krzysiek, U. Explanations for the Map of Landslides and Areas Threatened by Mass Movements on a Scale of 1: 10000 Gródek nad Dunajcem Commune, Nowosądeckie County, Małpolskie Manucipality; Ministerstwo Środowiska: Warszawa, Poland, 2015. (In Polish) [Google Scholar]
- Grabowski, D.; Marciniec, P.; Mrozek, T.; Neścieruk, P.; Rączkowski, W.; Wójcik, A.; Zimnal, Z. Manual for Mapping Landslides and Areas Threatened by Mass Movements; Ministerstwo Środowiska: Warszawa, Poland, 2008. (In Polish) [Google Scholar]
- Gorczyca, E.; Wrońska-Wałach, D.; Długosz, M. Landslide Hazards in the Polish Flysch Carpathians: Example of Łososina Dolna Commune. In Geomorphological Impacts of Extreme Weather; Springer: Dordrecht, The Netherlands, 2013; pp. 237–250. [Google Scholar] [CrossRef]
- Pawłuszek, K.; Ziaja, M.; Borkowski, A. Accuracy assessment of the height component of the airborne laser scanning data collected in the ISOK system for the Widawa River Valley. Acta Sci. Polonorum. Geod. Descr. Terrarum 2014, 13, 27–37. [Google Scholar]
- Prakash, N.; Manconi, A.; Loew, S. Mapping landslides on EO data: Performance of deep learning models vs. traditional machine learning models. Remote Sens. 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Pawłuszek, K.; Marczak, S.; Borkowski, A.; Tarolli, P. Multi-aspect analysis of object-oriented landslide detection based on an extended set of LiDAR-derived terrain features. ISPRS Int. J. Geo-Inf. 2019, 8, 321. [Google Scholar] [CrossRef] [Green Version]
- Pawluszek, K.; Borkowski, A.; Tarolli, P. Sensitivity analysis of automatic landslide mapping: Numerical experiments towards the best solution. Landslides 2018, 15, 1851–1865. [Google Scholar] [CrossRef] [Green Version]
- Pawłuszek, K.; Borkowski, A.; Tarolli, P. Towards the optimal pixel size of DEM for automatic mapping of landslide areas. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 42, 83–89. [Google Scholar] [CrossRef] [Green Version]
- Pawłuszek, K.; Borkowski, A. Landslides identification using airborne laser scanning data derived topographic terrain attributes and support vector machine classification. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, 8. [Google Scholar] [CrossRef]
- Evans, J.S.; Oakleaf, J.; Cushman, S.A.; Theobald, D. An ArcGIS Toolbox for Surface Gradient and Geomorphometric Modeling, Version 2.0-0. Available online: http://evansmurphy.wix.com/evansspatial (accessed on 3 August 2020).
- Ozdemir, A. Landslide susceptibility mapping of vicinity of Yaka Landslide (Gelendost, Turkey) using conditional probability approach in GIS. Environ. Geol. 2009, 57, 1675–1686. [Google Scholar] [CrossRef]
- Sharma, A.; Sur, U.; Singh, P.; Rai, P.K.; Srivastava, P.K. Probabilistic landslide hazard assessment using Statistical Information Value (SIV) and GIS Techniques: A case study of Himachal Pradesh, India. In Techniques for Disaster Risk Management and Mitigation; John Wiley and Sons: Hoboken, NJ, USA, 2020; pp. 197–208. [Google Scholar]
- Pokharel, B.; Thapa, P.B. Landslide susceptibility in Rasuwa District of central Nepal after the 2015 Gorkha Earthquake. J. Nepal Geol. Soc. 2019, 59, 79–88. [Google Scholar] [CrossRef]
- Chen, W.; Sun, Z.; Han, J. Landslide susceptibility modeling using integrated ensemble weights of evidence with logistic regression and random forest models. Appl. Sci. 2019, 9, 171. [Google Scholar] [CrossRef] [Green Version]
- Pawluszek, K. Landslide features identification and morphology investigation using high-resolution DEM derivatives. Nat. Hazards 2019, 96, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, B.; Rahman, M.S.; Sammonds, P.; Islam, R.; Uddin, K. Application of geospatial technologies in developing a dynamic landslide early warning system in a humanitarian context: The Rohingya refugee crisis in Cox’s Bazar, Bangladesh. Geomat. Nat. Hazards Risk 2020, 11. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Kumar, U.; Aithal, B.H.; Diwakar, P.G.; Joshi, N.V. Landslide susceptible locations in Western Ghats: Prediction through OpenModeller. In Proceedings of the 26th Annual In-House Symposium on Space Science and Technology, Bangalore, India, 28–29 January 2010; pp. 65–74. [Google Scholar]
- Abedini, M.; Ghasemyan, B.; Mogaddam, M.R. Landslide susceptibility mapping in Bijar city, Kurdistan Province, Iran: A comparative study by logistic regression and AHP models. Environ. Earth Sci. 2017, 76, 308. [Google Scholar] [CrossRef]
- Jenks, G.F. The data model concept in statistical mapping. Int. Yearb. Cartogr. 1967, 7, 186–190. [Google Scholar]
- Guzzetti, F.; Reichenbach, P.; Ardizzone, F.; Cardinali, M.; Galli, M. Estimating the quality of landslide susceptibility models. Geomorphology 2006, 81, 166–184. [Google Scholar] [CrossRef]
- Van Den Eeckhaut, M.; Hervás, J.; Jaedicke, C.; Malet, J.P.; Montanarella, L.; Nadim, F. Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides 2012, 8, 357–369. [Google Scholar] [CrossRef]
- Armstrong, M.P.; Xiao, N.; Bennett, D.A. Using genetic algorithms to create multicriteria class intervals for choropleth maps. Ann. Assoc. Am. Geogr 2003, 93, 595–623. [Google Scholar] [CrossRef]
- Cantarino, I.; Carrion, M.A.; Goerlich, F.; Ibañez, V.M. A ROC analysis-based classification method for landslide susceptibility maps. Landslides 2019, 16, 265–282. [Google Scholar] [CrossRef]
- Baeza, C.; Lantada, N.; Amorim, S. Statistical and spatial analysis of landslide susceptibility maps with different classification systems. Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef] [Green Version]
- Süzen, M.L.; Doyuran, V. A comparison of the GIS based landslide susceptibility assessment methods: Multivariate versus bivariate. Environ. Geol. 2004, 45, 665–679. [Google Scholar] [CrossRef]
- Gupta, R.P.; Kanungo, D.P.; Arora, M.K.; Sarkar, S. Approaches for comparative evaluation of raster GIS-based landslide susceptibility zonation maps. Int. J. Appl. Earth Obs. Geoinf. 2008, 10, 330–341. [Google Scholar] [CrossRef]
- Mezaal, M.R.; Pradhan, B. An improved algorithm for identifying shallow and deep-seated landslides in dense tropical forest from airborne laser scanning data. Catena 2018, 167, 147–159. [Google Scholar] [CrossRef]
Generated Second-Order Input Data | Method | Data Type | Data Source | Link |
---|---|---|---|---|
DEM | Ground point extraction (class = 2) | LiDAR | ISOK | https://isok.gov.pl/hydroportal.html |
Stream network | Flow direction and flow accumulation analysis | Shapefile | DEM | ----------------- |
Geology map | Digitalization | Raster | Polish National Geological Institute, | https://geolog.pgi.gov.pl/ |
Rożnów lake shapefile | NDVI < 0 | Sentinel-2A satellite image (25 March 2020) | European Space Agency | https://scihub.copernicus.eu/ |
Land cover map | Maximum Likelihood Classification | Sentinel-2A satellite image (25 March 2020) | European Space Agency | https://scihub.copernicus.eu/ |
Road network | - | Shapefile | OpenStreetMap | https://download.geofabrik.de/ |
Soil Suitability Map | Digitalization | Raster | Małopolska Spatial Information infrastructure | https://miip.geomalopolska.pl/ |
Fault and thrust network | Digitalization | Raster | [30] | [30] |
Precipitation | Inverse distance weighed interpolation | Precipitation measurement in meteorological stations (points) | Institute of Meteorology and Water Management | https://danepubliczne.imgw.pl/ |
Variable | Data Used | Technique | Classification Method | References |
---|---|---|---|---|
elevation | DEM | ----- | Natural Jenks | [2,3,13,14,15,19,22,26,46] |
aspect | DEM | ArcGIS | Natural Jenks | [13,14,21,22,24,26] |
slope | DEM | ArcGIS | Natural Jenks | [2,3,13,14,15,16,19,20,21,22,24] |
curvature | DEM | ArcGIS | Natural Jenks | [3,13,15,16,18,20,21,24] |
side exposure index (SEI) | DEM | [47] | Natural Jenks | [45] |
tectonics | geology map | ---- | ---- | [3,13,14,19,20,22,48] |
lithostratigraphic unit | geology map | ---- | ---- | [19,27] |
fault proximity | geology map | EDB | Natural Jenks | [13,19,20,21,22,24,26] |
thrust proximity | geology map | EDB | Natural Jenks | [49,50] |
distance to streams | DEM | EDB | Natural Jenks | [3,13,19,20] |
distance to lake | Rożnów lake shapefile | EDB | Natural Jenks | [16,24] |
compound topographic index (CTI) | DEM | [47] | Natural Jenks | [13,48,51,52] |
integrated moisture index (IMI) | DEM | [47] | Natural Jenks | [46,53] |
flow direction | DEM | [47] | Natural Jenks | [45,54] |
precipitation | measurements from meteorological stations | Natural Jenks | [13,51,55] | |
distance to roads | road network | EDB | Natural Jenks | [3,13,14,16,19,22,24,28,51] |
Land Cover (LC) | Sentinel-2A | Supervised ML classification | ---- | [2,3,13,28,51] |
NDVI | Sentinel-2A | where NIR is near inferred | Natural Jenks | [3,13,24,28,51] |
band (band 4) and RED is the red band (band 3) | ||||
soil suitability | digitized soil map | ----- | [3,13,21,24,28,51] |
Strategy | Map | Study Area | No of Landslide in Total Study Area | Landslide Area in Total Study [km2] | Percentage of Total [%] |
---|---|---|---|---|---|
1st strategy | SOPO | Łososina | 322 | 8.31 | 46 |
2nd strategy | SOPO | Gródek | 425 | 9.94 | 54 |
Total study area | 747 | 18.25 | ---- |
Model/ Modeling Area | Class | Validation Area | Pixels in Domain | % | Landslide Pixels within the Specific Class [km2] | Percentage of Total [%] | SCAI |
---|---|---|---|---|---|---|---|
Łososina | Very low | Łososina | 630,917 | 0.06 | 46 | 0 | 2491.70 |
Low | 2,064,901 | 0.18 | 11,417 | 0.01 | 32.86 | ||
Moderate | 2,900,312 | 0.25 | 213,545 | 0.10 | 2.47 | ||
High | 3,515,091 | 0.31 | 841,964 | 0.41 | 0.76 | ||
Very High | 2,323,889 | 0.20 | 1,010,439 | 0.49 | 0.42 | ||
Very low | Gródek | 877,306 | 0.04 | 1645 | 0 | 66.82 | |
Low | 6,874,753 | 0.35 | 144,129 | 0.06 | 5.98 | ||
Moderate | 6,843,835 | 0.34 | 907,641 | 0.37 | 0.94 | ||
High | 4,534,307 | 0.23 | 1,173,528 | 0.47 | 0.48 | ||
Very High | 713,775 | 0.04 | 259,295 | 0.10 | 0.34 | ||
Gródek | Very low | Gródek | 894,142 | 0.08 | 1006 | 0 | 194.50 |
Low | 3,390,427 | 0.30 | 22,136 | 0.01 | 33.48 | ||
Moderate | 6,373,115 | 0.56 | 324,619 | 0.13 | 4.27 | ||
High | 6,344,671 | 0.55 | 953,086 | 0.38 | 1.45 | ||
Very High | 2,841,621 | 0.25 | 1,185,391 | 0.48 | 0.52 | ||
Very low | Łososina | 1,236,346 | 0.11 | 3176 | 0 | 70.74 | |
Low | 2,948,451 | 0.26 | 196,954 | 0.09 | 2.72 | ||
Moderate | 4,448,486 | 0.39 | 924,964 | 0.45 | 0.87 | ||
High | 2,431,304 | 0.21 | 786,222 | 0.38 | 0.56 | ||
Very High | 370,523 | 0.03 | 166,095 | 0.08 | 0.41 |
Area | “Łososina” [%] | ”Gródek” [%] |
---|---|---|
“Łososina” area | 90 | 46 |
“Gródek” area | 57 | 86 |
Total | 72 | 68 |
Total average | 70 |
Difference between Models of “Łososina”and “Gródek” | ||
---|---|---|
Pixels | Area Percentage [%] | |
no difference | 13,031,043 | 47 |
one-zone difference | 14,623,961 | 42 |
two-zones difference | 3,219,848 | 10 |
three-zones difference | 405,072 | 1 |
four-zones difference | 751 | 0 |
Correlation (r) | 0.697 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pawluszek-Filipiak, K.; Oreńczak, N.; Pasternak, M. Investigating the Effect of Cross-Modeling in Landslide Susceptibility Mapping. Appl. Sci. 2020, 10, 6335. https://doi.org/10.3390/app10186335
Pawluszek-Filipiak K, Oreńczak N, Pasternak M. Investigating the Effect of Cross-Modeling in Landslide Susceptibility Mapping. Applied Sciences. 2020; 10(18):6335. https://doi.org/10.3390/app10186335
Chicago/Turabian StylePawluszek-Filipiak, Kamila, Natalia Oreńczak, and Marta Pasternak. 2020. "Investigating the Effect of Cross-Modeling in Landslide Susceptibility Mapping" Applied Sciences 10, no. 18: 6335. https://doi.org/10.3390/app10186335