Study on the Mechanical Properties of Loess Improved by Lignosulfonate and Its Mechanism Analysis and Prospects
Abstract
:1. Introduction
2. Lignin
2.1. Physical Properties
2.2. Structure and Composition
2.3. Properties and Applications of Lignosulfonates
3. Analysis of the Lignosulfonate Reinforcement Mechanism
3.1. Mineral Composition Analysis
3.2. Microstructure Analysis
4. Properties of Lignosulfonate-Improved Loess
4.1. Basic Physical Properties
4.1.1. Moisture Dosage Limits
4.1.2. Void Ratio
4.2. Static Strength Properties
4.2.1. Tensile Strength
4.2.2. Shear Strength
4.2.3. Compressive Strength
4.3. Water Sensitivity
4.3.1. Impermeability
4.3.2. Water Stability
4.3.3. Water-Holding Capacity
4.4. Dynamic Characteristics
4.4.1. Dynamic Elastic Modulus
4.4.2. Damping Ratio
4.5. Thermal Conductivity
5. Discussion of the Optimal Dosage
6. Challenges
7. Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hou, Y.F.; Li, P.; Xiao, T.; Hao, R.H. Review of research on loess reinforcement with curing agents. In Proceedings of the 2019 National Annual Conference on Engineering Geology, Beijing, China, 11 October 2019; pp. 490–497. (In Chinese). [Google Scholar]
- Li, N.; Sun, J.J.; Qian, W. Progress Review and Perspective Problems on Loess Foundation Reinforcement by Means of Modification Treatment. Adv. Earth Sci. 2017, 32, 209–219. (In Chinese) [Google Scholar]
- Zhang, J.J.; Liu, N. Application of dynamic compaction method in foundation treatment of collapsible loess landfill. Mod. Min. 2021, 37, 107–109. (In Chinese) [Google Scholar]
- Liu, Z.M. Evaluation of the effect of lime-soil compaction piles in strengthening collapsible loess subgrade. Fujian Commun. Sci. Technol. 2021, 7, 54–57. (In Chinese) [Google Scholar]
- Li, X.M. Research on Building Foundation Treatment Technology in Collapsible Loess Area. Constr. Des. Eng. 2019, 16, 45–46. (In Chinese) [Google Scholar]
- Wang, S. Evaluation of loess collapsibility and application of lime-soil compaction pile foundation treatment. Shanxi Archit. 2018, 44, 41–42. (In Chinese) [Google Scholar]
- Zhang, F.; Yang, H.; Ma, J.H.; Yu, Z.M.; Du, R.B. Research on the Treatment Technology of Collapsible Loess Foundation in Large-scale Sites. Anhui Archit. 2021, 28, 140–142. (In Chinese) [Google Scholar]
- Li, Y.L.; Sun, X.H.; Shi, X.Q. Optimal treatment scheme of collapsible loess foundation. J. Wuhan Univ. (Eng. Sci.) 2018, 51, 205–208. (In Chinese) [Google Scholar]
- Wang, B.J. Construction Technology of High Moisture dosage Collapsible Loess Subgrade Subgrade. Small Medium Enterp. Manag. Sci. (Early Issue) 2012, 2, 174–175. (In Chinese) [Google Scholar]
- Zhu, Y.L.; Xi, T.; Qiu, R.J.; Guo, Z.C.; Hou, S.P.; Zhang, J. Application and Development of Foundation Treatment Method. Henan Sci. Technol. 2020, 22, 96–99. (In Chinese) [Google Scholar]
- Liu, Z.; Chen, W.R. Experimental study on treatment of channel collapsible loess foundation by dynamic compaction. Constr. Mach. 2021, 2, 42–45. (In Chinese) [Google Scholar]
- Wang, H.X.; Wang, Y.M.; Gao, L.C.; Miao, S.C. Water stability properties of loess improved by solidified agents. Low Temp. Archit. Technol. 2014, 36, 115–118. (In Chinese) [Google Scholar]
- Tian, W.; Li, T.; Jia, N.; Zhang, X.D.; He, L. Study of Soil Curing Agent in Loess Subgrade Engineering. Highway 2021, 66, 45–52. (In Chinese) [Google Scholar]
- Zhou, H.; Shen, X. Application Research Situation and Prospect of Soil Stabilizer. Mater. Rev. 2014, 28, 134–138. (In Chinese) [Google Scholar]
- Wang, H.R.; Yang, Z.; Ji, X.B.; Liu, X.; Liang, Y. Research on Strength Properties of Improved Loess. Jiangsu Build. Mater. 2021, 6, 20–23. (In Chinese) [Google Scholar]
- Liu, W.J.; Jiang, H.; Yu, H.Q. Thermochemical conversion of lignin to functional materials: A review and future directions. Green Chem. 2015, 17, 4888–4907. [Google Scholar] [CrossRef]
- Kong, X.; Wang, G.; Liang, Y.; Zhang, Z.; Cui, S. The Engineering Properties and Microscopic Characteristics of High-Liquid-Limit Soil Improved with Lignin. Coatings 2022, 12, 268. [Google Scholar] [CrossRef]
- Yu, O.; Kim, K.H. Lignin to Materials: A Focused Review on Recent Novel Lignin Applications. Appl. Sci. 2020, 10, 4626. [Google Scholar] [CrossRef]
- Jiang, B.; Jin, Y.C. Research Progress of Functional Materials Based on Molecular Structural Properties of Lignin. J. Compos. Mater. 2022, 39, 1–24. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, T.; Yang, Y.-L.; Liu, S.-Y. Application of biomass by-product lignin stabilized soils as sustainable Geomaterials: A review. Sci. Total Environ. 2020, 728, 138830. [Google Scholar] [CrossRef]
- Lu, Y.; Wei, X.Y.; Zong, Z.M.; Lu, Y.C.; Zhao, W.; Cao, J.P. Structural Research and Application of Lignin. Prog. Chem. 2013, 25, 838–858. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Z.; Liu, Q.J.; Liu, L.; Hu, Y.J.; Li, B.G. Research progress of lignin extraction and preparation of lignin adsorbents. Mod. Chem. Ind. 2022, 1–5. Available online: https://kns.cnki.net/kcms/detail/11.2172.TQ.20220418.1855.003.html (accessed on 20 September 2022). (In Chinese).
- Bi, Z.H. Green Depolymerization of Lignocellulose Structure and Extraction and Transformation of Lignin and Cellulose; University of Science and Technology of China: Anhui, China, 2019. (In Chinese) [Google Scholar]
- Liu, Z.Z.; Gao, N.; Ma, Z.J.; Liu, F.Q.; Liang, S.Y.; Zhong, X.M. Study on the mesoscopic characteristics of lignin-improved loess pores. In Proceedings of the 2019 National Annual Conference on Engineering Geology, Beijing, China, 11 October 2019; pp. 566–573. (In Chinese). [Google Scholar]
- Ekielski, A.; Mishra, P.K. Lignin for Bioeconomy: The Present and Future Role of Technical Lignin. Int. J. Mol. Sci. 2020, 22, 63. [Google Scholar] [CrossRef] [PubMed]
- Roopan, S.M. An overview of natural renewable bio-polymer lignin towards nano and biotechnological applications. Int. J. Biol. Macromol. 2017, 103, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yang, D.J.; Qian, Y.; Qiu, X.Q. Research progress in preparation and application of lignin based functional materials. Prog. Chem. Eng. 2019, 38, 434–448. (In Chinese) [Google Scholar] [CrossRef]
- Guo, Y.F. Preparation and Application of Low-density Polyethylene-Lignin Composites for Construction Materials. Aging Appl. Synth. Mater. 2022, 51, 83–87. (In Chinese) [Google Scholar]
- Jedrzejczak, P.; Collins, M.N.; Jesionowski, T.; Klapiszewski, L. The role of lignin and lignin-based materials in sustainable construction-A comprehensive review. Int. J. Biol. Macromol. 2021, 187, 624–650. [Google Scholar] [CrossRef]
- Li, P.H.; Huang, L.J.; Li, J.Q.; Ren, J.P.; Wu, W.J. Progress on Application of Functional Lignin in Polymer Materials. Polym. Mater. Sci. Eng. 2022, 1–10. (In Chinese) [Google Scholar] [CrossRef]
- Cui, H.; Luo, T.; Lv, G.J.; Jiang, S.X.; Li, C.T.; Kou, G.Z.; Yang, G.H. Research progress on the application of lignin/natural polysaccharide composites. Mod. Chem. Ind. 2021, 41, 35–39. (In Chinese) [Google Scholar]
- Ma, M.G.; Yuan, Q. Research Progress of Multifunctional Lignin-based Materials. J. Guangdong Univ. Technol. 2022, 39, 14–20, 62. (In Chinese) [Google Scholar]
- Chen, X.J.; Ding, X.; Xu, K.Y. State-of-the-Art Review of Lignin and Its Derivatives on the Soil Properties Modification. Geotech. Fundam. 2021, 35, 156–160. (In Chinese) [Google Scholar]
- Thevenot, M.; Dignac, M.F.; Rumpel, C. Fate of lignins in soils: A review. Soil Biol. Biochem. 2010, 42, 1200–1211. [Google Scholar] [CrossRef]
- Vaiana, R.; Oliviero Rossi, C.; Perri, G. An Eco-Sustainable Stabilization of Clayey Road Subgrades by Lignin Treatment: An Overview and a Comparative Experimental Investigation. Appl. Sci. 2021, 11, 11720. [Google Scholar] [CrossRef]
- Wang, W.L.; Wang, H.B.; Huo, J.C.; Lei, Y.L.; Lv, S.Z. Research progress on modification of lignosulfonate water reducer. Prog. Chem. Eng. 2011, 30, 1039–1044. (In Chinese) [Google Scholar] [CrossRef]
- Jia, J.J.; Lei, Y.L.; Jiang, Y. Influence of Modified Calcium Lignosulfonate on early hydration of cement and mechanism discussion. Silic. Bull. 2018, 37, 3422–3426. (In Chinese) [Google Scholar] [CrossRef]
- Tian, N.N.; Li, R.C.; Jiang, J.T.; Ni, H.G.; Zong, X.T.; Wang, Y.M.; Zong, L. Preparation of sodium lignosulfonate based hydrogel adsorbent and its adsorption performance on Congo red. J. Zhejiang Univ. Technol. 2022, 1–16. Available online: http://kns.cnki.net/kcms/detail/33.1338.ts.20220707.1144.014.html (accessed on 6 September 2022). (In Chinese).
- Qiu, X.Q.; Zhou, M.S.; Wang, W.X.; Xie, B.D.; Yang, D.J. Study on dispersing effect of Sodium Lignosulfonate with different molecular weight on pulverized coal. J. Fuel Chem. 2005, 2, 179–183. (In Chinese) [Google Scholar]
- Yang, D.J.; Li, H.J.; Bai, M.X.; Qiu, X. Structure and properties of sodium lignosulfonate dye dispersants with different molecular weights. J. Chem. Eng. 2014, 65, 4138–4144. (In Chinese) [Google Scholar] [CrossRef]
- Wang, J.Y.; Qian, Y.; Zhou, Y.J.; Yang, D.J.; Qiu, X.Q. Atomic force microscopy mechanical test in lignosulfonate / silica inorganic particle system-from dispersion mechanism research to product design. Engineering 2021, 7, 223–241. (In Chinese) [Google Scholar] [CrossRef]
- Nasrollahzadeh, M.; Issaabadi, Z.; Varma, R.S. Magnetic Lignosulfonate-Supported Pd Complex: Renewable Resource-Derived Catalyst for Aqueous Suzuki–Miyaura Reaction. ACS Omega 2019, 4, 14234–14241. [Google Scholar] [CrossRef]
- He, Z.Q.; Fan, H.H.; Wang, J.Q.; Liu, G.; Wang, Z.N.; Yu, J.H. Experimental study of engineering properties of loess reinforced by lignosulfonate. Rock Soil Mech. 2017, 38, 731–739. (In Chinese) [Google Scholar]
- Wang, J.L.; Xue, M.; Zhao, C.K.; Yue, F.X. Influences of lignin fractionation on its utilization. CIESC J. 2022, 1–20. Available online: https://kns.cnki.net/kcms/detail/11.1946.TQ.20220314.1850.003.html (accessed on 20 September 2022). (In Chinese).
- Yan, Z.Y.; Chen, Y.H.; Wu, J.; Deng, Y.J.; Shen, K.Z.; Fang, G.G. Research progress on the application of lignin functional materials. Chin. J. Appl. Chem. Eng. 2022, 51, 491–495, 500. (In Chinese) [Google Scholar]
- Liu, Z.Z. Mechanical Properties and Reinforcement Mechanism of Lignin-Improved Loess; Lanzhou University: Gansu, China, 2020. (In Chinese) [Google Scholar]
- Wang, Q.; Liu, Z.Z.; Zhong, X.M.; Gao, Z.N.; Liu, F.Q. Dynamic Elastic Modulus and Damping Ratio of Lignin-Modified Loess. J. Renew. Mater. 2021, 9, 523–540. [Google Scholar] [CrossRef]
- Wang, Q.; Zhong, X.M.; Ma, H.P.; Wang, S.Y.; Liu, Z.Z.; Guo, P. Microstructure and Reinforcement Mechanism of Lignin-Modified Loess. J. Mater. Civ. Eng. 2020, 32, 04020319. [Google Scholar] [CrossRef]
- Hou, X.; Ma, W.; Li, G.Y.; Mu, Y.H.; Zhou, Z.W.; Wang, F. Effects of lignosulfonates on mechanical properties of Lanzhou loess. Rock Soil Mech. 2017, 38, 18–26. (In Chinese) [Google Scholar]
- Liu, Z.; Wang, Q.; Zhong, X.; Liu, F.; Liang, S.; Gao, Z. Water holding capacity and water stability of loess improved by lignin. Chin. J. Rock Mech. Eng. 2020, 39, 2582–2592. (In Chinese) [Google Scholar]
- Jiang, T.D. Lignin, 2nd ed.; Chemical Industry Press: Beijing, China, 2008. (In Chinese) [Google Scholar]
- Huang, Y. Wettability and Microscopic Properties of Lignin-Improved Loess; Chang’an University: Xi’an, China, 2021. (In Chinese) [Google Scholar]
- Wang, Y. Structural Characteristics of Loess and Its Influence on Soil Shear Strength; Northwestern University: Evanston, IL, USA, 2019. (In Chinese) [Google Scholar]
- Liu, R.X. Effect of Clay Mineral Dosage on Shear Strength of Collapsing Soil; Fujian Agriculture and Forestry University: Fuzhou, China, 2017. (In Chinese) [Google Scholar]
- Liu, W.; Wang, J.; Lin, G.C.; Wen, L.; Wang, Q. Microscopic Mechanism Affecting Shear Strength in Lignin-Treated Loess Samples. Adv. Mater. Sci. Eng. 2019, 2019, 7126040. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Q.; Lin, G.C.; Xu, X.T. Variations of suction and suction stress of unsaturated loess due to changes in lignin content and sample preparation method. J. Mt. Sci. 2021, 18, 2168–2183. [Google Scholar] [CrossRef]
- Dong, C.F.; Lin, C.; Zhang, W.Y.; Sun, X.L.; Huang, Y.L. Study on the thermal parameters and mechanical properties of lignin fiber improved loess in cold and arid areas. Resour. Environ. Arid. Reg. 2022, 36, 119–126. (In Chinese) [Google Scholar]
- Li, G.Y.; Hou, X.; Zhou, Y.; Ma, W.; Mu, Y.H.; Chen, D.; Tang, L.Y. Freeze-thaw resistance of eco-material stabilized loess. J. Mt. Sci. 2021, 18, 794–805. [Google Scholar] [CrossRef]
- Roshan, K.; Choobbasti, A.J.; Kutanaei, S.S.; Fakhrabadi, A. The effect of adding polypropylene fibers on the freeze-thaw cycle durability of lignosulfonate stabilised clayey sand. Cold Reg. Sci. Technol. 2022, 193, 103418. [Google Scholar] [CrossRef]
- Roshan, K.; Choobbasti, A.J.; Kutanaei, S.S. Evaluation of the impact of fiber reinforcement on the durability of lignosulfonate stabilized clayey sand under wet-dry condition. Transp. Geotech. 2020, 23, 100359. [Google Scholar] [CrossRef]
- Vakili, A.H.; Salimi, M.; Lu, Y.; Shamsi, M.; Nazari, Z. Strength and post-freeze-thaw behavior of a marl soil modified by lignosulfonate and polypropylene fiber: An environmentally friendly approach. Constr. Build. Mater. 2022, 332, 127364. [Google Scholar] [CrossRef]
- Vakili, A.H.; Ghasemi, J.; bin Selamat, M.R.; Salimi, M.; Farhadi, M.S. Internal erosional behaviour of dispersive clay stabilized with lignosulfonate and reinforced with polypropylene fiber. Constr. Build. Mater. 2018, 193, 405–415. [Google Scholar] [CrossRef]
- Lu, Y.; Li, J.B.; Zhuang, B.L.; Su, L.; Wu, T. Research on composite improvement of dispersive soil properties for lignosulfonate + polypropylene fiber roadbed. Highw. Eng. 2022, 47, 118–124. (In Chinese) [Google Scholar] [CrossRef]
Reference | Density (g·cm3) | Moisture Dosage (%) | Liquid Limit (%) | Plastic Limit (%) | Plasticity Index | Proportion | Maximum Dry Density | Optimal Moisture Dosage |
---|---|---|---|---|---|---|---|---|
Liu [50] | 1.35 | 5.21 | 24.00 | 14.50 | 9.50 | 2.72 | 1.78 | 14.60 |
Liu [46] | ||||||||
Huang [52] | 13.92 | 30.50 | 20.00 | 10.50 | 1.74 | 19.60 | ||
Wang [48] | 1.59 | 13.30 | 25.60 | 16.44 | 9.16 | 2.71 | 1.71 | 16.6 |
Sample | Test Optimal Dosage (%) | Recommended Dosage (%) | ||
---|---|---|---|---|
Lignosulfonate-improved loess | Static Strength Properties | Tensile strength | 1–2 | 1 |
Shear strength | 1 | |||
Compressive strength | 1 | |||
Water sensitivity | Impermeability | 3 | 1–2 | |
Water stability | 1–2 | |||
Water-holding capacity | 1–2 | |||
Dynamic characteristics | Dynamic elastic modulus | 1–1.5 | 1–1.5 | |
Damping ratio | 1–2 | |||
Thermal conductivity | Thermal conductivity | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, P.; Lin, Q.; Fang, L. Study on the Mechanical Properties of Loess Improved by Lignosulfonate and Its Mechanism Analysis and Prospects. Appl. Sci. 2022, 12, 9843. https://doi.org/10.3390/app12199843
Xu P, Lin Q, Fang L. Study on the Mechanical Properties of Loess Improved by Lignosulfonate and Its Mechanism Analysis and Prospects. Applied Sciences. 2022; 12(19):9843. https://doi.org/10.3390/app12199843
Chicago/Turabian StyleXu, Ping, Qingwei Lin, and Lingyun Fang. 2022. "Study on the Mechanical Properties of Loess Improved by Lignosulfonate and Its Mechanism Analysis and Prospects" Applied Sciences 12, no. 19: 9843. https://doi.org/10.3390/app12199843