Detection of Ocean Internal Waves Based on Modified Deep Convolutional Generative Adversarial Network and WaveNet in Moderate Resolution Imaging Spectroradiometer Images
Abstract
:1. Introduction
1.1. Internal Waves
1.2. Challenges and Research Objectives
1.3. Contributions
1.4. Paper Structure
2. Related Work
3. Methods and Data
3.1. Data Augmentation
3.1.1. MODIS Images
3.1.2. Data Augmentation
3.2. Construction of the WaveNet Network Model
3.2.1. Residual Block
3.2.2. SE Residual Block
3.2.3. WaveNet
3.3. Transfer Learning
4. Experiments and Results
4.1. Analysis of Generated Images Using the Modified DCGAN
4.2. Comparison of Classification Results of the WaveNet Network Using Different Training Sets
4.3. Discussion
4.4. Display of Test Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, C.-Y.; Hsu, J.R.-C.; Cheng, M.; Chen, H.-H.; Kuo, C.-F. An investigation on internal solitary waves in a two-layer fluid: Propagation and reflection from steep slopes. Ocean Eng. 2007, 34, 171–184. [Google Scholar] [CrossRef]
- Seas, C.; Liu, A.K.; Steve, Y.; Liang, N.K. Evolution of nonlinear internal waves in the East and South China Seas. J. Geophys. Res. Ocean. 1998, 103, 7995–8008. [Google Scholar] [CrossRef]
- Whalen, C.B.; de Lavergne, C.; Naveira Garabato, A.C.; Klymak, J.M.; MacKinnon, J.A.; Sheen, K.L. Internal wave-driven mixing: Governing processes and consequences for climate. Nat. Rev. Earth Environ. 2020, 1, 606–621. [Google Scholar] [CrossRef]
- van Haren, H.; Gostiaux, L. Energy Release Through Internal Wave Breaking. Oceanography 2012, 25, 124–131. [Google Scholar] [CrossRef]
- Cai, S.-q.; Gan, Z.-j. Progress in the study of the internal solition in the northern south china sea. Adv. Earth Sci. 2001, 16, 215–219. [Google Scholar]
- Barnes, W.L.; Xiong, X.; Salomonson, V.V. Status of Terra MODIS and Aqua MODIS. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; Volume 2, pp. 970–972. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V.N. Support-Vector Networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Samadzadegan, F.; Hasani, H.; Schenk, T. Simultaneous feature selection and SVM parameter determination in classification of hyperspectral imagery using Ant Colony Optimization. Can. J. Remote. Sens. 2012, 38, 139–156. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Li, J.Y.; Plaza, A.J. Active Learning With Convolutional Neural Networks for Hyperspectral Image Classification Using a New Bayesian Approach. IEEE Trans. Geosci. Remote Sens. 2018, 56, 6440–6461. [Google Scholar] [CrossRef]
- Bao, S.; Meng, J.; Sun, L.; Liu, Y. Detection of ocean internal waves based on Faster R-CNN in SAR images. J. Oceanol. Limnol. 2019, 38, 55–63. [Google Scholar] [CrossRef]
- Yu, D.; Xu, Q.; Guo, H.; Zhao, C.; Lin, Y.; Li, D. An Efficient and Lightweight Convolutional Neural Network for Remote Sensing Image Scene Classification. Sensors 2020, 20, 1999. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, Y.; Zhu, Z. Error-Tolerant Deep Learning for Remote Sensing Image Scene Classification. IEEE Trans. Cybern. 2020, 51, 1756–1768. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.-G.; Zhang, H.-S.; Qi, K.; Ding, L.-Y. Stripe segmentation of oceanic internal waves in SAR images based on SegNet. Geocarto Int. 2021, 37, 8567–8578. [Google Scholar] [CrossRef]
- Tao, M.; Xu, C.; Guo, L.; Wang, X.; Xu, Y. An Internal Waves Data Set From Sentinel-1 Synthetic Aperture Radar Imagery and Preliminary Detection. Earth Space Sci. 2022, 9, e2022EA002528. [Google Scholar] [CrossRef]
- Serebryany, A.; Khimchenko, E.; Zamshin, V.; Popov, O.Y. Features of the Field of Internal Waves on the Abkhazian Shelf of the Black Sea according to Remote Sensing Data and In Situ Measurements. J. Mar. Sci. Eng. 2022, 10, 1342. [Google Scholar] [CrossRef]
- Guo, A.J.X.; Zhu, F. A CNN-Based Spatial Feature Fusion Algorithm for Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2018, 57, 7170–7181. [Google Scholar] [CrossRef]
- Ramp, S.R.; Yang, Y.J.; Bahr, F.L. Characterizing the nonlinear internal wave climate in the northeastern South China Sea. Nonlinear Process. Geophys. 2010, 17, 481–498. [Google Scholar] [CrossRef]
- Meng, J.; Sun, L.; Zhang, H.; Hu, B.; Hou, F.; Bao, S. Remote sensing survey and research on internal solitary waves in the South China Sea-Western Pacific-East Indian Ocean (SCS-WPAC-EIND). Acta Oceanol. Sin. 2022, 41, 154–170. [Google Scholar] [CrossRef]
- Goodfellow, I.J.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.C.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the 28th Conference on Neural Information Processing Systems—NIPS 2014, Montreal, QC, Canada, 8–13 December 2014. [Google Scholar] [CrossRef]
- Zhang, H.; Xu, T.; Li, H.; Zhang, S.; Wang, X.; Huang, X.; Metaxas, D.N. StackGAN: Text to Photo-Realistic Image Synthesis with Stacked Generative Adversarial Networks. In Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 22–29 October 2017; pp. 5908–5916. [Google Scholar] [CrossRef]
- Wei, G.; Luo, M.; Liu, H.; Zhang, D.; Zheng, Q. Progressive generative adversarial networks with reliable sample identification. Pattern Recognit. Lett. 2020, 130, 91–98. [Google Scholar] [CrossRef]
- Radford, A.; Metz, L.; Chintala, S. Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks. arXiv 2015, arXiv:1511.06434. [Google Scholar] [CrossRef]
- Nair, V.; Hinton, G.E. Rectified Linear Units Improve Restricted Boltzmann Machines. In Proceedings of the ICML’10: Proceedings of the 27th International Conference on International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Helber, P.; Bischke, B.; Dengel, A.R.; Borth, D. EuroSAT: A Novel Dataset and Deep Learning Benchmark for Land Use and Land Cover Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 12, 2217–2226. [Google Scholar] [CrossRef]
- van der Maaten, L.; Hinton, G.E. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605. [Google Scholar]
- van der Maaten, L. Learning a Parametric Embedding by Preserving Local Structure. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Clearwater Beach, FL, USA, 16–18 April 2009. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks. Commun. ACM 2012, 60, 84–90. [Google Scholar] [CrossRef]
- Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar] [CrossRef]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.E.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar] [CrossRef]
Original Data Volume | Batch Size | Learning Rate | Training Epochs | Optimizer | Exponential Decay Rate for the First Moment Is Estimated in the Optimizer | Exponential Decay Rate for the Second-Moment Estimates in the Optimizer |
---|---|---|---|---|---|---|
700 | 16 | 0.0005 | 1000 | Adam | 0.5 | 0.999 |
Unit: Images | Original Data Volume | Dataset Size for Traditional Data Augmentation | Dataset Size Generated by the Modified DCGAN | Training Set 1 | Training Set 2 | Test Set |
---|---|---|---|---|---|---|
Cloud | 700 | 1300 | 1300 | 2000 | 2000 | 400 |
Land | 700 | 1300 | 1300 | 2000 | 2000 | 400 |
Ocean | 700 | 1300 | 1300 | 2000 | 2000 | 400 |
Oceanic internal waves | 700 | 1300 | 1300 | 2000 | 2000 | 400 |
Network Layer | Input Feature Map Size | Output Feature Map Size |
---|---|---|
3 × 3 Conv | 3 × 64 × 64 | 64 × 64 × 64 |
2 × 2 Max Pooling | 64 × 64 × 64 | 64 × 32 × 32 |
Residual Block | 64 × 32 × 32 | 128 × 32 × 32 |
SE Residual Block | 128 × 32 × 32 | 128 × 32 × 32 |
Residual Block | 128 × 32 × 32 | 256 × 16 × 16 |
SE Residual Block | 256 × 16 × 16 | 256 × 16 × 16 |
Residual Block | 256 × 16 × 16 | 512 × 8 × 8 |
SE Residual Block | 512 × 8 × 8 | 512 × 8 × 8 |
Global Average Pooling | 512 × 8 × 8 | 512 × 1 × 1 |
Fully Connected | 512 | 4 |
Batch Size | Learning Rate | Training Epochs | Optimizer |
---|---|---|---|
32 | 0.001 | 500 | Adam |
Hardware Equipment | Software Environment |
---|---|
CPU: Intel(R) Xeon(R) Gold 5218R 2.10 GHz | Rocky Linux 8 |
RAM:32 GB | CUDA 11.4 |
GPU: NVIDIA RTX 3090 | Pytorch 1.12.1 |
Traditional Data Augmentation/% | Data Augmentation Based on the Modified DCGAN/% | |
---|---|---|
Overall accuracy | 93.188 | 98.625 |
Accuracy of cloud recognition | 97.000 | 99.750 |
Accuracy of land recognition | 90.750 | 97.250 |
Accuracy of ocean recognition | 90.250 | 98.500 |
Accuracy of oceanic internal waves recognition | 94.750 | 99.000 |
Traditional Data Augmentation/% | Data Augmentation Based on the Modified DCGAN/% | |
---|---|---|
Precision of cloud recognition | 92.38 | 98.28 |
Precision of land recognition | 91.44 | 98.73 |
Precision of ocean recognition | 91.62 | 98.25 |
Precision of oceanic internal waves recognition | 97.43 | 99.25 |
Traditional Data Augmentation/% | Data Augmentation Based on the Modified DCGAN/% | |
---|---|---|
Recall of cloud recognition | 97.00 | 99.75 |
Recall of land recognition | 90.75 | 97.25 |
Recall of ocean recognition | 90.25 | 98.50 |
Recall of oceanic internal waves recognition | 94.75 | 99.00 |
Batch Size | Learning Rate | Training Epochs | Optimizer |
---|---|---|---|
128 | 0.001 | 500 | Adam |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Z.; Gao, X.; Shi, L.; Li, N.; Zou, L. Detection of Ocean Internal Waves Based on Modified Deep Convolutional Generative Adversarial Network and WaveNet in Moderate Resolution Imaging Spectroradiometer Images. Appl. Sci. 2023, 13, 11235. https://doi.org/10.3390/app132011235
Jiang Z, Gao X, Shi L, Li N, Zou L. Detection of Ocean Internal Waves Based on Modified Deep Convolutional Generative Adversarial Network and WaveNet in Moderate Resolution Imaging Spectroradiometer Images. Applied Sciences. 2023; 13(20):11235. https://doi.org/10.3390/app132011235
Chicago/Turabian StyleJiang, Zhongyi, Xing Gao, Lin Shi, Ning Li, and Ling Zou. 2023. "Detection of Ocean Internal Waves Based on Modified Deep Convolutional Generative Adversarial Network and WaveNet in Moderate Resolution Imaging Spectroradiometer Images" Applied Sciences 13, no. 20: 11235. https://doi.org/10.3390/app132011235