Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability
Abstract
:1. Introduction
2. Methods
2.1. Literature Search
2.2. External Evaluation Cohort
2.3. External Predictability Evaluation
2.4. Monte Carlo Simulations Using Selected Models
3. Results
3.1. Review of Selected Population Pharmacokinetic Models
3.2. Characteristics of External Cohort
3.3. Prediction-Based Diagnostics
3.4. Simulation-Based Diagnostics
3.5. Simulated VDZ Concentration-Time Profiles
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rosario, M.; Dirks, N.L.; Milch, C.; Parikh, A.; Bargfrede, M.; Wyant, T.; Fedyk, E.; Fox, I. A review of the clinical pharmacokinetics, pharmacodynamics, and immunogenicity of vedolizumab. Clin. Pharmacokinet. 2017, 56, 1287–1301. [Google Scholar] [CrossRef] [PubMed]
- SmPC Entyvio. Summary of Product Characteristics for Entyvio 300 mg Powder for Concentrate for Solution for Infusion. Available online: https://www.medicines.org.uk/emc/product/5442/smpc#gref (accessed on 1 October 2024).
- Okamoto, H.; Dirks, N.L.; Rosario, M.; Hori, T.; Hibi, T. Population pharmacokinetics of vedolizumab in Asian and non-Asian patients with ulcerative colitis and Crohn’s disease. Intest. Res. 2021, 19, 95–105. [Google Scholar] [CrossRef] [PubMed]
- Deyhim, T.; Cheifetz, A.S.; Papamichael, K. Drug clearance in patients with inflammatory bowel disease treated with biologics. J. Clin. Med. 2023, 12, 7132. [Google Scholar] [CrossRef]
- Papamichael, K.; Cheifetz, A.S.; Melmed, G.Y.; Irving, P.M.; Vande Casteele, N.; Kozuch, P.L.; Raffals, L.E.; Baidoo, L.; Bressler, B.; Devlin, S.M.; et al. Appropriate therapeutic drug monitoring of biologic agents for patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2019, 17, 1655–1668.e3. [Google Scholar] [CrossRef] [PubMed]
- Sethi, S.; Dias, S.; Kumar, A.; Blackwell, J.; Brookes, M.J.; Segal, J.P. Meta-analysis: The efficacy of therapeutic drug monitoring of anti-TNF-therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2023, 57, 1362–1374. [Google Scholar] [CrossRef]
- Cheifetz, A.S.; Abreu, M.T.; Afif, W.; Cross, R.K.; Dubinsky, M.C.; Loftus, E.V., Jr.; Osterman, M.T.; Saroufim, A.; Siegel, C.A.; Yarur, A.J.; et al. A comprehensive literature review and expert consensus statement on therapeutic drug monitoring of biologics in inflammatory bowel disease. Am. J. Gastroenterol. 2021, 116, 2014–2025. [Google Scholar] [CrossRef]
- Dreesen, E.; Verstockt, B.; Bian, S.; de Bruyn, M.; Compernolle, G.; Tops, S.; Noman, M.; Van Assche, G.; Ferrante, M.; Gils, A.; et al. Evidence to support monitoring of vedolizumab trough concentrations in patients with inflammatory bowel diseases. Clin. Gastroenterol. Hepatol. 2018, 16, 1937–1946.e8. [Google Scholar] [CrossRef]
- Di Paolo, A.; Luci, G. Personalized medicine of monoclonal antibodies in inflammatory bowel disease: Pharmacogenetics, therapeutic drug monitoring, and beyond. Front. Pharmacol. 2020, 11, 610806. [Google Scholar] [CrossRef]
- El Hassani, M.; Marsot, A. External evaluation of population pharmacokinetic models for precision dosing: Current state and knowledge gaps. Clin. Pharmacokinet. 2023, 62, 533–540. [Google Scholar] [CrossRef]
- Rosario, M.; Dirks, N.L.; Gastonguay, M.R.; Fasanmade, A.A.; Wyant, T.; Parikh, A.; Sandborn, W.J.; Feagan, B.G.; Reinisch, W.; Fox, I. Population pharmacokinetics-pharmacodynamics of vedolizumab in patients with ulcerative colitis and Crohn’s disease. Aliment. Pharmacol. Ther. 2015, 42, 188–202. [Google Scholar] [CrossRef]
- Wyant, T.; Yang, L.; Rosario, M. Comparison of the ELISA and ECL assay for vedolizumab anti-drug antibodies: Assessing the impact on pharmacokinetics and safety outcomes of the phase 3 GEMINI trials. AAPS J. 2020, 23, 3. [Google Scholar] [CrossRef] [PubMed]
- Pauwels, R.W.M.; Proietti, E.; van der Woude, C.J.; Oudijk, L.; Crombag, M.B.S.; Peppelenbosch, M.P.; Grohmann, U.; Fuhler, G.M.; de Vries, A.C. Vedolizumab tissue concentration correlates to mucosal inflammation and objective treatment response in inflammatory bowel disease. Inflamm. Bowel Dis. 2021, 27, 1813–1820. [Google Scholar] [CrossRef] [PubMed]
- Hanzel, J.; Dreesen, E.; Vermeire, S.; Lowenberg, M.; Hoentjen, F.; Bossuyt, P.; Clasquin, E.; Baert, F.J.; D’Haens, G.R.; Mathot, R. Pharmacokinetic-pharmacodynamic model of vedolizumab for targeting endoscopic remission in patients with Crohn disease: Posthoc analysis of the LOVE-CD study. Inflamm. Bowel Dis. 2022, 28, 689–699. [Google Scholar] [CrossRef]
- Brendel, K.; Dartois, C.; Comets, E.; Lemenuel-Diot, A.; Laveille, C.; Tranchand, B.; Girard, P.; Laffont, C.M.; Mentre, F. Are population pharmacokinetic and/or pharmacodynamic models adequately evaluated? A survey of the literature from 2002 to 2004. Clin. Pharmacokinet. 2007, 46, 221–234. [Google Scholar] [CrossRef]
- Sheiner, L.B.; Beal, S.L. Some suggestions for measuring predictive performance. J. Pharmacokinet. Biopharm. 1981, 9, 503–512. [Google Scholar] [CrossRef]
- Chen, S.; Huang, L.; Huang, W.; Zheng, Y.; Shen, L.; Liu, M.; Chen, W.; Wu, X. External evaluation of population pharmacokinetic models for high-dose methotrexate in adult patients with hematological tumors. J. Clin. Pharmacol. 2024, 64, 437–448. [Google Scholar] [CrossRef]
- Konecki, C.; Feliu, C.; Cazaubon, Y.; Giusti, D.; Tonye-Libyh, M.; Brixi, H.; Cadiot, G.; Biron, A.; Djerada, Z. External evaluation of population pharmacokinetic models and bayes-based dosing of infliximab. Pharmaceutics 2021, 13, 1191. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, C.Y.; Li, Z.R.; Pan, Y.; Liu, M.B.; Jiao, Z. Can population pharmacokinetics of antibiotics be extrapolated? Implications of external evaluations. Clin. Pharmacokinet. 2021, 60, 53–68. [Google Scholar] [CrossRef]
- Ryu, S.; Jung, W.J.; Jiao, Z.; Chae, J.W.; Yun, H.Y. External evaluation of the predictive performance of seven population pharmacokinetic models for phenobarbital in neonates. Br. J. Clin. Pharmacol. 2021, 87, 3878–3889. [Google Scholar] [CrossRef]
- Zhao, C.Y.; Jiao, Z.; Mao, J.J.; Qiu, X.Y. External evaluation of published population pharmacokinetic models of tacrolimus in adult renal transplant recipients. Br. J. Clin. Pharmacol. 2016, 81, 891–907. [Google Scholar] [CrossRef]
- Dirks, N.L.; Meibohm, B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin. Pharmacokinet. 2010, 49, 633–659. [Google Scholar] [CrossRef] [PubMed]
- Feagan, B.G.; Rutgeerts, P.; Sands, B.E.; Hanauer, S.; Colombel, J.F.; Sandborn, W.J.; Van Assche, G.; Axler, J.; Kim, H.J.; Danese, S.; et al. Vedolizumab as induction and maintenance therapy for ulcerative colitis. N. Engl. J. Med. 2013, 369, 699–710. [Google Scholar] [CrossRef] [PubMed]
- Sandborn, W.J.; Feagan, B.G.; Rutgeerts, P.; Hanauer, S.; Colombel, J.F.; Sands, B.E.; Lukas, M.; Fedorak, R.N.; Lee, S.; Bressler, B.; et al. Vedolizumab as induction and maintenance therapy for Crohn’s disease. N. Engl. J. Med. 2013, 369, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Sands, B.E.; Feagan, B.G.; Rutgeerts, P.; Colombel, J.F.; Sandborn, W.J.; Sy, R.; D’Haens, G.; Ben-Horin, S.; Xu, J.; Rosario, M.; et al. Effects of vedolizumab induction therapy for patients with Crohn’s disease in whom tumor necrosis factor antagonist treatment failed. Gastroenterology 2014, 147, 618–627.e3. [Google Scholar] [CrossRef]
- Singh, S.; Dulai, P.S.; Vande Casteele, N.; Battat, R.; Fumery, M.; Boland, B.S.; Sandborn, W.J. Systematic review with meta-analysis: Association between vedolizumab trough concentration and clinical outcomes in patients with inflammatory bowel diseases. Aliment. Pharmacol. Ther. 2019, 50, 848–857. [Google Scholar] [CrossRef]
- Steenholdt, C.; Lorentsen, R.D.; Petersen, P.N.; Widigson, E.S.; Kloft, C.; Klaasen, R.A.; Brynskov, J. Therapeutic drug monitoring of vedolizumab therapy in inflammatory bowel disease. J. Gastroenterol. Hepatol. 2024, 39, 1088–1098. [Google Scholar] [CrossRef]
- Alsoud, D.; Vermeire, S.; Verstockt, B. Monitoring vedolizumab and ustekinumab drug levels in patients with inflammatory bowel disease: Hype or hope? Curr. Opin. Pharmacol. 2020, 55, 17–30. [Google Scholar] [CrossRef]
Reference | Population Number of Subjects (Disease Type); Age | Software/Model | Typical Value of Pharmacokinetic Parameters, IIV, IOV and RV | Covariates Significantly Influenced CLL with Potential Clinical Relevance |
---|---|---|---|---|
Developed population pharmacokinetic models | ||||
Rosario et al., 2015 [11] | 2554 individuals: 87 healthy volunteers from phase 1 study, 46 patients from phase 2 study (UC), and 891, 1115, and 415 patients from phase 3 GEMINI 1 (UC), GEMINI 2 (CD), and GEMINI 3 (CD) studies; age median (range): 36 (18–78) years | NONMEM/ 2-COMP model with parallel linear and nonlinear elimination | CLL: 0.159 L/day (UC) CLL: 0.155 L/day (CD) Km: 0.964 µg/mL Vmax: 0.265 mg/day Q: 0.12 L/day V1: 3.19 L V2: 1.65 L IIV CLL: 34.6%, corrCLL–V1: 0.566, IIV V1: 19.1%, corrCLL–Vmax: −0.192, corrV1–Vmax: −0.267, IIV Vmax: 105% Proportional error: 0.0554 (23.5%) | ALB, WT |
Population pharmacokinetic model reanalysis/update of previous model | ||||
Okamoto et al., 2020 [3] | 1933 individuals: 9 patients from phase 1 study (CPH-001, UC), 743, 966, 152, and 63 patients from phase 3 GEMINI 1 (UC), GEMINI 2 (CD), CCT-101 (UC), and CCT-001 (CD) studies; age median (range): 36 (17–79) years | NONMEM/ 2-COMP model with parallel linear and nonlinear elimination | CLL: 0.165 L/day (ADA−) 0.246 L/day (ADA+) Km: 0.851 μg/mL Vmax: 0.238 mg/day Q: 0.161 L/day V1: 3.16 L V2: 1.84 L IIV CLL: 30.8% corr CLL–V1: 0.581 IIV V1: 20.2% corr CLL–V2: 0.0188 corr V1-V2: 0.371 IIV V2: 70.2% IOV CLL: 20.3% Proportional error: 0.0318 (17.8%) | WT, ALB, ADA status and titer |
Pauwels et al., 2021 [13] | 37 patients: 12 (UC), 3 (IBD-U), 22 (CD); age median (IQR): 39 (26–50) years | NONMEM/ Serum PK model: 2-COMP model with parallel linear and nonlinear elimination Serum-tissue PK model: 3-comp model | Serum PK model: CLL: 0.159 L/day (UC), 0.155 L/day (CD) Km: 0.964 mg/L Vmax: 0.265 mg/day Q: 0.12 L/day V1: 3.19 L V2: 1.65 L Serum—tissue PK model: Q2: 0.07 L/day V3: 1.31 L | ALB |
Hanzel et al., 2022 [14] | 108 patients from LOVE-CD trial; age median (IQR): 36 (28–46) years | NONMEM/ 2-COMP model with parallel linear and nonlinear elimination | CLL: 0.215 L/day Km: 0.964 mg/L fixed Vmax: 0.265 mg/day fixed Q: 0.12 L/day fixed V1: 4.92 L V2: 1.65 L fixed IIV CLL: 26.2% IOV CLL: 15.2% Additive error: 0.469 mg/L Proportional error: 18.9% | ALB, ADA status, no previous biologic exposure |
Characteristic (Units) | n (%)/Mean ± SD (Range) |
---|---|
Diagnosis | |
UC | 62 (58.49%) |
CD | 44 (41.51%) |
Age (years) | 49.76 ± 17.43 (21–78) |
Sex (male) | 55 (51.9%) |
Body weight (kg) | 71.94 ± 12.76 (44–110) |
Albumin (g/L) * | 42.93 ± 4.63 (30–55) |
Immunomodulatory drug | 86 (81.1%) |
Prior anti-TNFα therapy | 44 (41.5%) |
Vedolizumab concentrations (µg/mL) | |
TAD 4 weeks | 26.09 ± 14.30 (5.309–62.79) |
TAD 6 weeks | 23.43 ± 8.53 (9.119–43.08) |
TAD 8 weeks | 15.39 ± 11.40 (3.02–47.22) |
Population PK Model | MPE (µg/mL) 95% CI | MDPE (%) | RMSPE (µg/mL) | F20 (%) | F30 (%) | MAPE (%) |
---|---|---|---|---|---|---|
Rosario et al., 2015 [11] | 3.77 1.05–6.50 | 25.57 | 15.25 | 20.18 | 29.82 | 47.56 |
Okamoto et al., 2021 [3] | 2.84 0.156–5.53 | 20.75 | 14.85 | 21.05 | 28.95 | 44.58 |
Pauwels et al., 2021 [13] | 2.06 −0.567–4.68 | 18.63 | 14.38 | 21.93 | 28.07 | 45.96 |
Hanzel et al., 2022 [14] | 2.91 0.331–5.49 | 13.82 | 14.30 | 25.44 | 38.60 | 41.64 |
Population PK Model | Wilcoxon * | Fisher * | Shapiro–Wilks * | Global * |
---|---|---|---|---|
Rosario et al., 2015 [11] | 0.0958 | 0.155 | 0.381 | 0.0958 |
Okamoto et al., 2021 [3] | 0.132 | 1 | 0.578 | 0.132 |
Hanzel et al., 2022 [14] | 0.0802 | 0.00894 | 0.394 | 0.00894 |
Population PK Model | Median Trough Concentration (IQR) of Vedolizumab (VDZ) in Week 22 [µg/mL] | |
---|---|---|
Best-Case Combination of Covariates 1 | Worst-Case Combination of Covariates 2 | |
Hanzel et al. [14] | 13.83 (3.62–34.46) | 0.77 (0.12–4.61) |
Okamoto et al. [3] | 10.86 (1.54–35.89) | 1.32 (0.03–8.20) |
Rosario et al. [11] * | 10.98 (1.74–37.19) | 4.31 (0.36–18.86) |
Population PK Model | Patients with Trough Concentration of Vedolizumab (VDZ) >12 µg/mL in Week 22 [%] | |
---|---|---|
Best-Case Combination of Covariates 1 and 300 mg Every 8 Weeks During Maintenance | Worst-Case Combination of Covariates 2 and 300 mg Every 4 Weeks During Maintenance | |
Hanzel et al. [14] | 60.8 | 9.5 |
Okamoto et al. [3] | 44.1 | 22.6 |
Rosario et al. [11] * | 45.5 | 77.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jovanović, M.; Homšek, A.; Marković, S.; Kralj, Đ.; Svorcan, P.; Knežević Ivanovski, T.; Odanović, O.; Vučićević, K. Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability. Biomedicines 2025, 13, 43. https://doi.org/10.3390/biomedicines13010043
Jovanović M, Homšek A, Marković S, Kralj Đ, Svorcan P, Knežević Ivanovski T, Odanović O, Vučićević K. Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability. Biomedicines. 2025; 13(1):43. https://doi.org/10.3390/biomedicines13010043
Chicago/Turabian StyleJovanović, Marija, Ana Homšek, Srđan Marković, Đorđe Kralj, Petar Svorcan, Tamara Knežević Ivanovski, Olga Odanović, and Katarina Vučićević. 2025. "Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability" Biomedicines 13, no. 1: 43. https://doi.org/10.3390/biomedicines13010043
APA StyleJovanović, M., Homšek, A., Marković, S., Kralj, Đ., Svorcan, P., Knežević Ivanovski, T., Odanović, O., & Vučićević, K. (2025). Review and External Evaluation of Population Pharmacokinetic Models for Vedolizumab in Patients with Inflammatory Bowel Disease: Assessing Predictive Performance and Clinical Applicability. Biomedicines, 13(1), 43. https://doi.org/10.3390/biomedicines13010043