Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms
Abstract
:1. Introduction
1.1. Basics and History of Fullerene (C60)
1.2. Synthesis of Fullerene
1.3. Functionalization of Fullerene
2. Modification of Electrodes with Fullerenes
2.1. Fullerene(C60)-DNA Hybrid
2.1.1. Interaction of DNA with Fullerene
2.1.2. Fullerene for DNA Biosensing
2.1.3. Fullerene as an Immobilization Platform
2.2. Fullerene(C60)-Antibody Hybrid
2.3. Fullerene(C60)-Protein Hybrid
2.3.1. Enzymes
2.3.2. Redox Active Proteins
Receptor | Analyte | Linear Range | Sensitivity | LOD | References |
---|---|---|---|---|---|
ssDNA | Dopamine | 2–160 μM | - | 0.6 μM | [58] |
ssDNA | PDGF-BB | 0.002–40 nM | - | 0.6 pM | [64] |
ssDNA | Thrombin | 1 μM–10 nM | - | 0.3 fM | [65] |
ssDNA | 16S rDNA | - | - | - | [54] |
dsDNA | CD | 0.1–25.0 nM | 0.0235 μA·nM−1 | 0.03 nM | [66] |
dsDNA | dopamine | 10−5–10−2 M | 100 nA.nM-1 | 1.2 μM | [60] |
dsDNA | Epinephrine | 10−6–10−2 M | 100 nA.nM-1 | 0.1 μM | [60] |
dsDNA | Norepinephrine | 10−5–10−2 M | 0.1 nA.nM-1 | 2.3 μM | [60] |
Anti-IgG | IgG | - | 1.25 × 102 Hz/(mg/mL) | - | [69] |
Anti-Hb | Hb | - | 1.5 × 104 Hz | <10−4 mg/mL | [69] |
Anti-E. coli | Escherichia coli O157:H7 | 3.2 × 101 to 3.2 × 106 CFU/mL | - | 15 CFU/mL | [72] |
GOD-Chit | Glucose | 0.05–1 mM | - | 694 ± 8 μM | [80] |
cobalt(II) hexacyanoferrate-GOD | Glucose | 0–8 mM | 5.60 × 102 nA/mM | 1.6 μm | [82] |
Glucose oxidase | Glucose | - | 5.9 × 102 Hz/Δlog M | 3.9 × 10−5 M | [87] |
Urease | Urea | 1.2 mM–0.042 mM | 59.67 ± 0.91 mV/dcade | - | [91] |
AuNPs-TVL | Laccase | 0.03–0.30 M | - | 0.006 mM | [88] |
3. Conclusions and Future Prospective
Acknowledgments
Conflicts of Interest
References
- Baghchi, M.; Moriyama, H.; Shahidi, F. Bio-Nanotechnology: A Revolution in Food, Biomedical and Health Sciences; Wiley-Blackwell: Hoboken, NJ, USA, 2013. [Google Scholar]
- Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L. Nanotechnology and biosensors. Biotechnol. Adv. 2004, 22, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Vashist, S.; Venkatesh, A.G.; Mitsakakis, K.; Czilwik, G.; Roth, G.; Stetten, F.; Zengerle, R. Nanotechnology-based biosensors and diagnostics: Technology push versus industrial/healthcare requirements. BioNanoSci. 2012, 2, 115–126. [Google Scholar] [CrossRef]
- Thostenson, E.T.; Ren, Z.; Chou, T.-W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912. [Google Scholar] [CrossRef]
- Gooding, J.J. Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing. Electrochim. Acta 2005, 50, 3049–3060. [Google Scholar] [CrossRef]
- Vairavapandian, D.; Vichchulada, P.; Lay, M.D. Preparation and modification of carbon nanotubes: Review of recent advances and applications in catalysis and sensing. Anal. Chim. Acta 2008, 626, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Jariwala, D.; Sangwan, V.K.; Lauhon, L.J.; Marks, T.J.; Hersam, M.C. Carbon nanomaterials for electronics, optoelectronics, photovoltaics, and sensing. Chem. Soc. Rev. 2013, 42, 2824–2860. [Google Scholar] [CrossRef] [PubMed]
- Gogotsi, Y.; Presser, V. Carbon Nanomaterial; Taylor & Francis Group, LLC: New York, USA, 2014. [Google Scholar]
- Bosi, S.; da Ros, T.; Spalluto, G.; Prato, M. Fullerene derivatives: An attractive tool for biological applications. Eur. J. Med. Chem. 2003, 38, 913–923. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresselhaus, G.; Eklund, P.C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications; Elsevier Scienvce: London, UK, 1996. [Google Scholar]
- Langa, F.; Nierengarten, J.F. Fullerenes: Principles and Applications; The Royal Society of Chemistry: Cambridge, UK, 2007. [Google Scholar]
- Afreen, S.; Muthoosamy, K.; Manickam, S.; Hashim, U. Functionalized fullerene (C60) as a potential nanomediator in the fabrication of highly sensitive biosensors. Biosens. Bioelectron. 2015, 63, 354–364. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Dresslhaus, G. Fullerenes and fullerene derived solids as electronic materials. Annu. Rev. Mater. Sci. 1995, 25, 487–523. [Google Scholar] [CrossRef]
- Jensen, A.W.; Wilson, S.R.; Schuster, D.I. Biological applications of fullerenes. Biorg. Med. Chem. 1996, 4, 767–779. [Google Scholar] [CrossRef]
- Smalley, R.E. Discovering the fullerenes. Rev. Mod. Phys. 1997, 69, 723–730. [Google Scholar] [CrossRef]
- Shinar, J.; Vardeny, Z.V.; Kafafi, Z.H. Optical and Electronic Properties of Fullerene and Fullerene-Based Materials; Marcel Dekker: New York, NY, USA, 2000. [Google Scholar]
- Lieber, C.M.; Chen, C.-C. Preparation of fullerenes and fullerene-based materials. In Solid State Physics; Henry, E., Frans, S., Eds.; Academic Press: Waltham, MA, USA, 1994; Volume 48, pp. 109–148. [Google Scholar]
- Scott, L.T. Methods for the chemical synthesis of fullerenes. Angew. Chem. Int. Ed. 2004, 43, 4994–5007. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Mau, A.W.H. Controlled synthesis and modification of carbon nanotubes and C60: Carbon nanostructures for advanced polymeric composite materials. Adv. Mater. 2001, 13, 899–913. [Google Scholar] [CrossRef]
- Kharlamov, A.I.; Bondarenko, M.E.; Kirillova, N.V. New method for synthesis of fullerenes and fullerene hydrides from benzene. Russ. J. Appl. Chem. 2012, 85, 233–238. [Google Scholar] [CrossRef]
- Inomata, K.; Aoki, N.; Koinuma, H. Production of fullerenes by low temperature plasma chemical vaper deposition under atmospheric pressure. Jpn. J. Appl. Phys. 1994, 33, 197–199. [Google Scholar] [CrossRef]
- Hirsch, A. Functionalization of fullerenes and carbon nanotubes. Phys. Status Solidi b 2006, 243, 3209–3212. [Google Scholar] [CrossRef]
- Caballero, R.; de la Cruz, P.; Langa, F. Chapter 3 basic principles of the chemical reactivity of fullerenes. In Fullerenes: Principles and Applications (2); The Royal Society of Chemistry: London, UK, 2012; pp. 66–124. [Google Scholar]
- Bingel, C. Cyclopropanierung von fullerenen. Chem. Ber. 1993, 126, 1957–1959. [Google Scholar] [CrossRef]
- Rotello, V.M.; Howard, J.B.; Yadav, T.; Conn, M.M.; Viani, E.; Giovane, L.M.; Lafleur, A.L. Isolation of fullerene products from flames: Structure and synthesis of the C60-cyclopentadiene adduct. Tetrahedron Lett. 1993, 34, 1561–1562. [Google Scholar] [CrossRef]
- Arena, F.; Bullo, F.; Conti, F.; Corvaja, C.; Maggini, M.; Prato, M.; Scorrano, G. Synthesis and epr studies of radicals and biradical anions of C60 nitroxide derivatives. J. Am. Chem. Soc. 1997, 119, 789–795. [Google Scholar] [CrossRef]
- Compton, R.G.; Spackman, R.A.; Wellington, R.G.; Green, M.L.H.; Turner, J. A C60 modified electrode: Electrochemical formation of tetra-butylammonium salts of C60 anions. J. Electroanal. Chem. 1992, 327, 337–341. [Google Scholar] [CrossRef]
- Sherigara, B.S.; Kutner, W.; D’Souza, F. Electrocatalytic properties and sensor applications of fullerenes and carbon nanotubes. Electroanalysis 2003, 15, 753–772. [Google Scholar] [CrossRef]
- Lokesh, S.V.; Sherigara, B.S.; Mahesh, J.H.M.; Mascarenhas, R.J. Electrochemical reactivity of C60 modified carbon paste electrode by physical vapor deposition method. Int. J. Electrochem. Sci. 2008, 3, 578–587. [Google Scholar]
- Compton, R.G.; Spackman, R.A.; Riley, D.J.; Wellington, R.G.; Eklund, J.C.; Fisher, A.C.; Green, M.L.H.; Doothwaite, R.E.; Stephens, A.H.H.; Turner, J. Voltammetry at C60-modified electrodes. J. Electroanal. Chem. 1993, 344, 235–247. [Google Scholar] [CrossRef]
- Jehoulet, C.; Obeng, Y.S.; Kim, Y.T.; Zhou, F.; Bard, A.J. Electrochemistry and langmuir trough studies of fullerene C60 and C70 films. J. Am. Chem. Soc. 1992, 114, 4237–4247. [Google Scholar] [CrossRef]
- Chang, C.-L.; Hu, C.-W.; Tseng, C.-Y.; Chuang, C.-N.; Ho, K.-C.; Leung, M.-K. Ambipolar freestanding triphenylamine/fullerene thin-film by electrochemical deposition and its read-writable properties by electrochemical treatments. Electrochim. Acta 2014, 116, 69–77. [Google Scholar] [CrossRef]
- Bedioui, F.; Devynck, J.; Bied-Charreton, C. Immobilization of metalloporphyrins in electropolymerized films: Design and applications. Acc. Chem. Res. 1995, 28, 30–36. [Google Scholar] [CrossRef]
- Imahori, H.; Azuma, T.; Ajavakom, A.; Norieda, H.; Yamada, H.; Sakata, Y. An investigation of photocurrent generation by gold electrodes modified with self-assembled monolayers of C60. J. Phys. Chem. B 1999, 103, 7233–7237. [Google Scholar] [CrossRef]
- Lowe, C.R. Biosensors. Trends Biotechnol. 1984, 2, 59–65. [Google Scholar] [CrossRef]
- Buck, R.P.; Hatfield, W.E.; Umana, M.; Bowden, E.F. Biosensors Technology: Fundamentals and Applications; Marcel Dekker, INC.: New York, NY, USA, 1990. [Google Scholar]
- Turner, A.P.F. Biosensors: Sense and sensibility. Chem. Soc. Rev. 2013, 42, 3184–3196. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Dong, S. Biomolecule-nanoparticle hybrids for electrochemical biosensors. TrAC Trends Anal. Chem. 2009, 28, 96–109. [Google Scholar] [CrossRef]
- Hirxch, A.; Brettreich, M. Fullerene: Chemistry and Reactions; Wiley: Weinheim, Germany, 2005. [Google Scholar]
- Guldi, D.M.; Prato, M. Excited-state properties of C60 fullerene derivatives. Acc. Chem. Res. 2000, 33, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Wang, J. Nanomaterial-based electrochemical biosensors. Analyst 2005, 130, 421–426. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, N. Biosensors Based on Nanomaterial and Nanodevices; CRC Press, Taylor & Francis Group, LLC: Boca Raton, FL, USA, 2014. [Google Scholar]
- Katz, E.; Willner, I. Integrated nanoparticle-biomolecule hybrid systems: Synthesis, properties, and applications. Angew. Chem. Int. Ed. 2004, 43, 6042–6108. [Google Scholar] [CrossRef] [PubMed]
- Kerman, K.; Saito, M.; Tamiya, E.; Yamamura, S.; Takamura, Y. Nanomaterial-based electrochemical biosensors for medical applications. TrAC Trends Anal. Chem. 2008, 27, 585–592. [Google Scholar] [CrossRef]
- Yang, X.; Ebrahimi, A.; Li, A.; Cui, Q. Fullerene-biomolecule conjugate and their biomedical applications. Int. J. Nanomed. 2014, 9, 77–92. [Google Scholar] [CrossRef] [PubMed]
- Hu, C.; Zhang, Y.; Bao, G.; Zhang, Y.; Liu, M.; Wang, Z.L. DNA functionalized single-walled carbon nanotubes for electrochemical detection. J. Phys. Chem. B 2005, 109, 20072–20076. [Google Scholar] [CrossRef] [PubMed]
- Nalwa, H.S. Handbook of Nanostructured Biomaterials and Their Applications in Nanobiotechnology; American Science Publishers: CA, USA, 2005; Volume 2. [Google Scholar]
- Cassell, A.M.; Scrivens, W.A.; Tour, J.M. Assembly of DNA/fullerene hybrid materials. Angew. Chem. Int. Ed. 1998, 37, 1528–1531. [Google Scholar] [CrossRef]
- Pang, D.-W.; Zhao, Y.-D.; Fang, P.-F.; Cheng, J.-K.; Chen, Y.-Y.; Qi, Y.-P.; Abruña, H.D. Interactions between DNA and a water-soluble C60 derivative studied by surface-based electrochemical methods. J. Electroanal. Chem. 2004, 567, 339–349. [Google Scholar] [CrossRef]
- Zhao, X.; Striolo, A.; Cummings, P.T. C60 binds to and deforms nucleotides. Biophys. J. 2005, 89, 3856–3862. [Google Scholar] [CrossRef] [PubMed]
- Alshehri, M.; Cox, B.; Hill, J. C60 fullerene binding to DNA. Eur. Phys. J. B 2014, 87, 1–11. [Google Scholar] [CrossRef]
- Gooding, J.J. Electrochemical DNA hybridization biosensors. Electroanalysis 2002, 14, 1149–1156. [Google Scholar] [CrossRef]
- Kerman, K.; Kaboyashi, M.; Tamiya, E. Recent trend in electrochemical DNA biosensor technology. Meas. Sci. Technol. 2004, 15, R1–R11. [Google Scholar] [CrossRef]
- Shiraishi, H.; Itoh, T.; Hayashi, H.; Takagi, K.; Sakane, M.; Mori, T.; Wang, J. Electrochemical detection of E. coli 16s rDNA sequence using air-plasma-activated fullerene-impregnated screen printed electrodes. Bioelectrochemistry 2007, 70, 481–487. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lu, F.; Tu, Y.; Ren, Z. Glucose biosensors based on carbon nanotube nanoelectrode ensembles. Nano Lett. 2004, 4, 191–195. [Google Scholar] [CrossRef]
- Cai, H.; Cao, X.; Jiang, Y.; He, P.; Fang, Y. Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal. Bioanal. Chem. 2003, 375, 287–293. [Google Scholar] [PubMed]
- Cai, H.; Xu, Y.; He, P.-G.; Fang, Y.-Z. Indicator free DNA hybridization detection by impedance measurement based on the DNA-doped conducting polymer film formed on the carbon nanotube modified electrode. Electroanalysis 2003, 15, 1864–1870. [Google Scholar] [CrossRef]
- Zhang, X.; Qu, Y.; Piao, G.; Zhao, J.; Jiao, K. Reduced working electrode based on fullerene C60 nanotubes@DNA: Characterization and application. Mater. Sci. Eng. B 2010, 175, 159–163. [Google Scholar] [CrossRef]
- Xing, H.; Wong, N.Y.; Xiang, Y.; Lu, Y. DNA aptamer functionalized nanomaterials for intracellular analysis, cancer cell imaging and drug delivery. Curr. Opin. Chem. Biol. 2012, 16, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Gugoasa, L.A.; Stefan-van Staden, R.I.; Alexandru Ciucu, A.; van Staden Jacobus, F. Influence of physical immobilization of dsdna on carbon based matrices of electrochemical sensors. Curr. Pharm. Anal. 2014, 10, 20–29. [Google Scholar] [CrossRef]
- Mashayekhi, H.; Ghosh, S.; Du, P.; Xing, B. Effect of natural organic matter on aggregation behavior of C60 fullerene in water. J. Colloid Interface Sci. 2012, 374, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yuan, R.; Chai, Y. Determination of glucose using pseudobienzyme channeling based on sugar-lectin biospecific interactions in a novel organic-inorganic composite matrix. J. Phys. Chem. C 2010, 114, 21397–21404. [Google Scholar] [CrossRef]
- Zhuo, Y.; Yuan, P.-X.; Yuan, R.; Chai, Y.-Q.; Hong, C.-L. Nanostructured conductive material containing ferrocenyl for reagentless amperometric immunosensors. Biomaterials 2008, 29, 1501–1508. [Google Scholar] [CrossRef] [PubMed]
- Han, J.; Zhuo, Y.; Chai, Y.; Yuan, R.; Xiang, Y.; Zhu, Q.; Liao, N. Multi-labeled functionalized C60 nanohybrid as tracing tag for ultrasensitive electrochemical aptasensing. Biosens. Bioelectron. 2013, 46, 74–79. [Google Scholar] [CrossRef] [PubMed]
- Zhuo, Y.; Ma, M.-N.; Chai, Y.-Q.; Zhao, M.; Yuan, R. Amplified electrochemiluminescent aptasensor using mimicking bi-enzyme nanocomplexes as signal enhancement. Anal. Chim. Acta 2014, 809, 47–53. [Google Scholar] [CrossRef] [PubMed]
- Gholivand, M.-B.; Jalalvand, A.R.; Goicoechea, H.C. Multivariate analysis for resolving interactions of carbidopa with dsdna at a fullerene- C60/gce. Int. J. Biol. Macromol. 2014, 69, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Yuan, R.; Chai, Y.; Niu, H.; Cao, Y.; Liu, H. Bi-enzyme synergetic catalysis to in situ generate coreactant of peroxydisulfate solution for ultrasensitive electrochemiluminescence immunoassay. Biosens. Bioelectron. 2012, 37, 6–10. [Google Scholar] [CrossRef] [PubMed]
- Rusling, J.F. Nanomaterials-based electrochemical immunosensors for proteins. Chem. Rec. 2012, 12, 164–176. [Google Scholar] [CrossRef] [PubMed]
- Pan, N.-Y.; Shih, J.-S. Piezoelectric crystal immunosensors based on immobilized fullerene C60-antibodies. Sens. Actuators B 2004, 98, 180–187. [Google Scholar] [CrossRef]
- Barnes, C.; D’Silva, C.; Jones, J.P.; Lewis, T.J. The theory of operation of piezoelectric quartz crystal sensors for biochemical application. Sens. Actuators A 1992, 31, 159–163. [Google Scholar] [CrossRef]
- Chou, F.F.; Chang, H.W.; Li, T.L.; Shih, J.S. Piezoelectric crystal/surface acoustic wave biosensors based on fullerene C60 and enzymes/antibodies/proteins. JICS 2008, 5, 1–15. [Google Scholar] [CrossRef]
- Li, Y.; Fang, L.; Cheng, P.; Deng, J.; Jiang, L.; Huang, H.; Zheng, J. An electrochemical immunosensor for sensitive detection of Escherichia coli o157:H7 using C60 based biocompatible platform and enzyme functionalized pt nanochains tracing tag. Biosens. Bioelectron. 2013, 49, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Hu, N. Direct electrochemistry of redox proteins or enzymes at various film electrodes and their possible applications in monitoring some pollutants. Pure Appl. Chem. 2001, 73, 1979–1991. [Google Scholar] [CrossRef]
- Kurz, A.; Halliwell, C.M.; Davis, J.J.; Hill, H.A.O.; Kurz, A.; Canters, G.W. A fullerene-modified protein. Chem. Commun. 1998, 433–434. [Google Scholar] [CrossRef]
- Braun, M.; Atalick, S.; Guldi, D.M.; Lanig, H.; Brettreich, M.; Burghardt, S.; Hatzimarinaki, M.; Ravanelli, E.; Prato, M.; van Eldik, R.; et al. Electrostatic complexation and photoinduced electron transfer between Zn-cytochrome c and polyanionic fullerene dendrimers. Chem. Eur. J. 2003, 9, 3867–3875. [Google Scholar] [CrossRef] [PubMed]
- Witte, P.; Beuerle, F.; Hartnagel, U.; Lebovitz, R.; Savouchkina, A.; Sali, S.; Guldi, D.; Chronakis, N.; Hirsch, A. Water solubility, antioxidant activity and cytochrome c binding of four families of exohedral adducts of C60 and C70. Org. Biomol. Chem. 2007, 5, 3599–3613. [Google Scholar] [CrossRef] [PubMed]
- Yin, Y.; Lü, Y.; Wu, P.; Cai, C. Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes. Sensors 2005, 5, 220–234. [Google Scholar] [CrossRef]
- Lukehart, L.M.; Scott, R.A. Nanomaterials: Inorganic and Bioinorganic Perpectives; John Wiley & Sons Ltd.: London, UK, 2008. [Google Scholar]
- Guisan, J.M. Methods in Biotechnology: Immobilization of Enzymes and Cells; Humana Press Inc.: Totawa, NJ, USA, 2006; Volume 22. [Google Scholar]
- Gao, Y.-F.; Yang, T.; Yang, X.-L.; Zhang, Y.-S.; Xiao, B.-L.; Hong, J.; Sheibani, N.; Ghourchian, H.; Hong, T.; Moosavi-Movahedi, A.A. Direct electrochemistry of glucose oxidase and glucose biosensing on a hydroxyl fullerenes modified glassy carbon electrode. Biosens. Bioelectron. 2014, 60, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Hecht, H.J.; Kalisz, H.M.; Hendle, J.; Schmid, R.D.; Schomburg, D. Crystal structure of glucose oxidase from aspergillus niger refined at 2·3 å reslution. J. Mol. Biol. 1993, 229, 153–172. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.-H.; Shih, J.-S. Immobilized fullerene C60-enzyme-based electrochemical glucose sensor. J. Chin. Chem. Soc. 2011, 58, 228–235. [Google Scholar] [CrossRef]
- Künzelmann, U.; Böttcher, H. Biosensor properties of glucose oxidase immobilized within SiO2 gels. Sens. Actuators B 1997, 39, 222–228. [Google Scholar] [CrossRef]
- Higuchi, A.; Hara, M.; Yun, K.-S.; Tak, T.-M. Recognition of substrates by membrane potential of immobilized glucose oxidase membranes. J. Appl. Polym. Sci. 1994, 51, 1735–1739. [Google Scholar] [CrossRef]
- Liu, B.; Hu, R.; Deng, J. Fabrication of an amperometric biosensor based on the immobilization of glucose oxidase in a modified molecular sieve matrix. Analyst 1997, 122, 821–826. [Google Scholar] [CrossRef]
- Tischer, W.; Wedekind, F. Immobilized enzymes: Methods and applications. In Biocatalysis—From Discovery to Application; Fessner, W.-D., Archelas, A., Demirjian, D.C., Furstoss, R., Griengl, H., Jaeger, K.E., Morís-Varas, E., Öhrlein, R., Reetz, M.T., Reymond, J.L., et al., Eds.; Springer: Berlin/Heidelberg, Germany, 1999; Volume 200, pp. 95–126. [Google Scholar]
- Chuang, C.-W.; Shih, J.-S. Preparation and application of immobilized c60-glucose oxidase enzyme in fullerene C60-coated piezoelectric quartz crystal glucose sensor. Sens. Actuators B 2001, 81, 1–8. [Google Scholar] [CrossRef]
- Lanzellotto, C.; Favero, G.; Antonelli, M.L.; Tortolini, C.; Cannistraro, S.; Coppari, E.; Mazzei, F. Nanostructured enzymatic biosensor based on fullerene and gold nanoparticles: Preparation, characterization and analytical applications. Biosens. Bioelectron. 2014, 55, 430–437. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, F.; Rogers, L.M.; O’Dell, E.S.; Kochman, A.; Kutner, W. Immobilization and electrochemical redox behavior of cytochrome c on fullerene film-modified electrodes. Bioelectrochemistry 2005, 66, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Soares, J.C.; Brisolari, A.; Rodrigues, V.D.C.; Sanches, E.A.; Gonçalves, D. Amperometric urea biosensors based on the entrapment of urease in polypyrrole films. React. Funct. Polymers 2012, 72, 148–152. [Google Scholar] [CrossRef]
- Saeedfar, K.; Heng, L.; Ling, T.; Rezayi, M. Potentiometric urea biosensor based on an immobilised fullerene-urease bio-conjugate. Sensors 2013, 13, 16851–16866. [Google Scholar] [CrossRef] [PubMed]
- Barberis, A.; Spissu, Y.; Fadda, A.; Azara, E.; Bazzu, G.; Marceddu, S.; Angioni, A.; Sanna, D.; Schirra, M.; Serra, P.A. Simultaneous amperometric detection of ascorbic acid and antioxidant capacity in orange, blueberry and kiwi juice, by a telemetric system coupled with a fullerene- or nanotubes-modified ascorbate subtractive biosensor. Biosens. Bioelectron. 2015, 67, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Sheng, Q.; Liu, R.; Zheng, J. Fullerene–nitrogen doped carbon nanotubes for the direct electrochemistry of hemoglobin and its application in biosensing. Bioelectrochemistry 2013, 94, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Moore, G.R.; Pettigrew, G.W. Cytochromes c, Evolutionary, Structural, and Physiochemical Aspects; Springer-Verlag: New York, NY, USA, 1990. [Google Scholar]
- Csiszár, M.; Szűcs, Á.; Tölgyesi, M.; Mechler, Á.; Nagy, J.B.; Novák, M. Electrochemical reactions of cytochrome c on electrodes modified by fullerene films. J. Electroanal. Chem. 2001, 497, 69–74. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilehvar, S.; De Wael, K. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms. Biosensors 2015, 5, 712-735. https://doi.org/10.3390/bios5040712
Pilehvar S, De Wael K. Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms. Biosensors. 2015; 5(4):712-735. https://doi.org/10.3390/bios5040712
Chicago/Turabian StylePilehvar, Sanaz, and Karolien De Wael. 2015. "Recent Advances in Electrochemical Biosensors Based on Fullerene-C60 Nano-Structured Platforms" Biosensors 5, no. 4: 712-735. https://doi.org/10.3390/bios5040712