Agroclimatic Zoning of Temperature Limitations for Growth of Stubble Cover Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methodical Approach
2.2. Climate Data
2.3. Statistical Analysis
3. Results
3.1. Sum of Effective Temperatures (SET)
3.2. Date of the First Autumn Frost (FRST)
4. Discussion
4.1. Sum of Effective Temperatures (SETs)
4.2. Date of the First Autumn Frost (FRST)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Scenario/Term of Sowing | ||||
---|---|---|---|---|
Statistical Parameters | Unit | A/August 20 | B/September 6 | C/September 20 |
Average | °C | 825.5 | 562.2 | 447.3 |
Minimal value (min) | °C | 408.8 | 259.4 | 185.8 |
Maximal value (max) | °C | 1019.5 | 706.9 | 583.4 |
Difference max-min values | °C | 610.7 | 447.5 | 397.7 |
Median | °C | 819.6 | 559.9 | 449.3 |
Standard deviation | °C | 94.9 | 69.2 | 63.9 |
Coefficient of variance | % | 11.50 | 12.31 | 14.27 |
Skew | - | −0.14 | −0.05 | −0.23 |
Kurtosis | - | −0.22 | −0.41 | 0.00 |
Lower quartile (25%) | °C | 770.9 | 513.4 | 406.5 |
Upper quartile (75%) | °C | 885.8 | 612.3 | 492.5 |
Average 2 m | Minimal 2 m | Minimal Ground | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Statistical Parameters | Unit | FRST0 | FRST-3 | FRST-5 | FRST0 | FRST-3 | FRST-5 | FRST0 | FRST-3 | FRST-5 |
Average | °C | 316 | 334 | 341 | 287 | 309 | 324 | 266 | 290 | 303 |
Minimal value (min) | °C | 273 | 295 | 307 | 243 | 280 | 297 | 216 | 261 | 279 |
Maximal value (max) | °C | 335 | 343 | 346 | 311 | 335 | 342 | 286 | 310 | 324 |
Difference max-min | °C | 61 | 49 | 40 | 68 | 54 | 45 | 70 | 49 | 46 |
Median | °C | 318 | 336 | 342 | 288 | 309 | 325 | 270 | 291 | 304 |
Standard deviation | °C | 20.63 | 21.51 | 21.30 | 18.93 | 20.07 | 20.83 | 25.76 | 25.17 | 26.34 |
Coefficient of variance | % | 6.52 | 6.44 | 6.25 | 6.60 | 6.49 | 6.43 | 9.69 | 8.68 | 8.68 |
Skew | - | −1.98 | −2.01 | −3.22 | −1.62 | −0.42 | −0.99 | −1.41 | −0.64 | −0.25 |
Kurtosis | - | 6.97 | 5.79 | 13.72 | 7.01 | 1.77 | 1.93 | 2.45 | 1.25 | 0.20 |
Lower quartile (25%) | °C | 314 | 331 | 341 | 284 | 305 | 321 | 261 | 285 | 298 |
Upper quartile (75%) | °C | 321 | 339 | 343 | 291 | 314 | 328 | 275 | 295 | 309 |
SET | No. of Pixels (500 × 500 m) | % of CR Territory | ||
---|---|---|---|---|
°C | 1961–1970 | 2011–2020 | 1961–1970 | 2011–2020 |
Scenario A | ||||
<450 | 43 | 2 | 0.01 | 0.00 |
>450 | 315,741 | 315,782 | 99.99 | 100.00 |
<550 | 748 | 521 | 0.24 | 0.16 |
>550 | 315,036 | 315,263 | 99.76 | 99.84 |
<650 | 6760 | 4215 | 2.14 | 1.33 |
>650 | 309,024 | 311,569 | 97.86 | 98.67 |
Scenario B | ||||
<450 | 7109 | 6624 | 2.25 | 2.10 |
>450 | 308,675 | 309,160 | 97.75 | 97.90 |
<550 | 88,430 | 46,434 | 28.00 | 14.70 |
>550 | 227,354 | 269,350 | 72.00 | 85.30 |
<650 | 305,306 | 244,322 | 96.68 | 77.37 |
>650 | 10,478 | 71,462 | 3.32 | 22.63 |
Scenario C | ||||
<450 | 128,243 | 60,080 | 40.61 | 19.03 |
>450 | 187,541 | 255,704 | 59.39 | 80.97 |
<550 | 312,573 | 270,732 | 98.98 | 85.73 |
>550 | 3211 | 45,052 | 1.02 | 14.27 |
<650 | 315,784 | 315,784 | 100.00 | 100.00 |
>650 | 0 | 0 | 0.00 | 0.00 |
References
- Blanco-Canqui, H.; Shaver, T.M.; Lindquist, J.L.; Shapiro, C.A.; Elmore, R.W.; Francis, C.A.; Hergert, G.W. Cover Crops and Ecosystem Services: Insights from Studies in Temperate Soils. Agron. J. 2015, 107, 2449–2474. [Google Scholar] [CrossRef]
- Scavo, A.; Fontanazza, S.; Restuccia, A.; Pesce, G.R.; Abbate, C.; Mauromicale, G. The Role of Cover Crops in Improving Soil Fertility and Plant Nutritional Status in Temperate Climates. A Review. Agron. Sustain. Dev. 2022, 42, 93. [Google Scholar] [CrossRef]
- Quintarelli, V.; Radicetti, E.; Allevato, E.; Stazi, S.R.; Haider, G.; Abideen, Z.; Bibi, S.; Jamal, A.; Mancinelli, R. Cover Crops for Sustainable Cropping Systems: A Review. Agriculture 2022, 12, 2076. [Google Scholar] [CrossRef]
- Porwollik, V.; Rolinski, S.; Heinke, J.; Von Bloh, W.; Schaphoff, S.; Müller, C. The Role of Cover Crops for Cropland Soil Carbon, Nitrogen Leaching, and Agricultural Yields-A Global Simulation Study with LPJmL (V. 5.0-Tillage-Cc). Biogeosciences 2022, 19, 957–977. [Google Scholar] [CrossRef]
- Abdalla, M.; Hastings, A.; Cheng, K.; Yue, Q.; Chadwick, D.; Espenberg, M.; Truu, J.; Rees, R.M.; Smith, P. A Critical Review of the Impacts of Cover Crops on Nitrogen Leaching, Net Greenhouse Gas Balance and Crop Productivity. Glob. Chang. Biol. 2019, 25, 2530–2543. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, R.; Steinbach, H.S.; De Paepe, J.L. Cover Crop Effects on Soils and Subsequent Crops in the Pampas: A Meta-Analysis. Soil Tillage Res. 2017, 170, 53–65. [Google Scholar] [CrossRef]
- Cechura, L.; Ullah, A.; Bajan, B.; Bavorová, M. Farmland Degradation in the Czech Republic: Drivers and Barriers of Mitigation Strategies in Agricultural Soils. L. Degrad. Dev. 2024, 35, 5596–5610. [Google Scholar] [CrossRef]
- Schön, J.; Gentsch, N.; Breunig, P. Cover Crops Support the Climate Change Mitigation Potential of Agroecosystems. PLoS ONE 2024, 19, e0302139. [Google Scholar] [CrossRef]
- Kathage, J.; Smit, B.; Janssens, B.; Haagsma, W.; Adrados, J.L. How Much Is Policy Driving the Adoption of Cover Crops? Evidence from Four EU Regions. Land Use Policy 2022, 116, 106016. [Google Scholar] [CrossRef] [PubMed]
- MZe Strategický Plán Společné Zemědělské Politiky Na Období, 2023–2027. Available online: https://mze.gov.cz/public/portal/mze/dotace/szp-pro-obdobi-2021-2027 (accessed on 15 November 2023).
- MZe Strategický Plán Společné Zemědělské Politiky 2023-2027, Přímé Platby. Available online: https://mze.gov.cz/public/portal/-q305171---_kKbk7-R/ekoschemata-2023-pouze-zakladni?_linka=a595234 (accessed on 15 November 2023).
- European Commission from Farm to Fork: Our Food, Our Health, Our Planet, Our Future. Available online: https://ec.europa.eu/commission/presscorner/detail/en/fs_20_908 (accessed on 3 January 2025).
- Qin, Z.; Guan, K.; Zhou, W.; Peng, B.; Villamil, M.B.; Jin, Z.; Tang, J.; Grant, R.; Gentry, L.; Margenot, A.J.; et al. Assessing the Impacts of Cover Crops on Maize and Soybean Yield in the U.S. Midwestern Agroecosystems. F. Crop. Res. 2021, 273, 108264. [Google Scholar] [CrossRef]
- Storr, T.; Simmons, R.W.; Hannam, J.A. A UK Survey of the Use and Management of Cover Crops. Ann. Appl. Biol. 2019, 174, 179–189. [Google Scholar] [CrossRef]
- Koudahe, K.; Allen, S.C.; Djaman, K. Critical Review of the Impact of Cover Crops on Soil Properties. Int. Soil Water Conserv. Res. 2022, 10, 343–354. [Google Scholar] [CrossRef]
- Ghimire, B.; Ghimire, R.; VanLeeuwen, D.; Mesbah, A. Cover Crop Residue Amount and Quality Effects on Soil Organic Carbon Mineralization. Sustainability 2017, 9, 2316. [Google Scholar] [CrossRef]
- Constantin, J.; Le Bas, C.; Justes, E. Large-Scale Assessment of Optimal Emergence and Destruction Dates for Cover Crops to Reduce Nitrate Leaching in Temperate Conditions Using the STICS Soil-Crop Model. Eur. J. Agron. 2015, 69, 75–87. [Google Scholar] [CrossRef]
- Fan, X.; Vrieling, A.; Muller, B.; Nelson, A. Winter Cover Crops in Dutch Maize Fields: Variability in Quality and Its Drivers Assessed from Multi-Temporal Sentinel-2 Imagery. Int. J. Appl. Earth Obs. Geoinf. 2020, 91, 102139. [Google Scholar] [CrossRef]
- Cottney, P.; Black, L.; Williams, P.; White, E. How Cover Crop Sowing Date Impacts upon Their Growth, Nutrient Assimilation and the Yield of the Subsequent Commercial Crop. Agronomy 2022, 12, 369. [Google Scholar] [CrossRef]
- Kumar, U.; Thomsen, I.K.; Eriksen, J.; Vogeler, I.; Mäenpää, M.; Hansen, E.M. Delaying Sowing of Cover Crops Decreases the Ability to Reduce Nitrate Leaching. Agric. Ecosyst. Environ. 2023, 355, 108598. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Quemada, M.; Vanclooster, M.; Ruiz-Ramos, M.; Rodriguez, A.; Gabriel, J.L. Assessing Cover Crop Management under Actual and Climate Change Conditions. Sci. Total Environ. 2018, 621, 1330–1341. [Google Scholar] [CrossRef]
- Pessotto, M.V.; Roberts, T.L.; Bertucci, M.; Santos, C.d.; Ross, J.; Savin, M. Determining Cardinal Temperatures for Eight Cover Crop Species. Agrosystems Geosci. Environ. 2023, 6, e20393. [Google Scholar] [CrossRef]
- Miller, P.; Lanier, W.; Brandt, S. Using Growing Degree Days to Predict Plant Stages. Ag/Ext. Commun. Coord. Commun. Serv. Mont. State Univ. Bozeman MO 2001, 7, 1–7. Available online: https://landresources.montana.edu/soilfertility/documents/PDF/pub/GDDPlantStagesMT200103AG.pdf (accessed on 3 January 2025).
- Pullens, J.W.M.; Sørensen, C.A.G.; Olesen, J.E. Temperature-Based Prediction of Harvest Date in Winter and Spring Cereals as a Basis for Assessing Viability for Growing Cover Crops. F. Crop. Res. 2021, 264, 108085. [Google Scholar] [CrossRef]
- Květoň, V.; Haberle, J.; Žák, M. New Indicator for Classification of Agroclimatic Conditions for the Cultivation of Catch Crops. Arch. Agron. Soil Sci. 2016, 63, 250–260. [Google Scholar] [CrossRef]
- Kubíková, Z.; Smejkalová, H.; Hutyrová, H.; Kintl, A.; Elbl, J. Effect of Sowing Date on the Development of Lacy Phacelia (Phacelia Tanacetifolia Benth.). Plants 2022, 11, 3177. [Google Scholar] [CrossRef] [PubMed]
- Kalinová, J.; Moudrý, J. Evaluation of Frost Resistance in Varieties of Common Buckwheat (Fagopyrum Esculentum Moench). Plant Soil Environ. 2003, 49, 410–413. [Google Scholar] [CrossRef]
- Labreuche, J.; Bodilis, A.M. Sensitivity of Cover Crops to Frost and to Mechanical Destruction Methods. In Proceedings of the 21ème Conférence du COLUMA—Journées Internationales sur la Lutte contre les Mauvaises Herbes, Dijon, France, 8–9 December 2010; pp. 321–331. [Google Scholar]
- Gabbrielli, M.; Perego, A.; Acutis, M.; Bechini, L. A Review of Crop Frost Damage Models and Their Potential Application to Cover Crops. Ital. J. Agron. 2022, 17, 2046. [Google Scholar] [CrossRef]
- Gabbrielli, M.; Corti, M.; Perfetto, M.; Fassa, V.; Bechini, L. Satellite-Based Frost Damage Detection in Support of Winter Cover Crops Management: A Case Study on White Mustard. Agronomy 2022, 12, 2025. [Google Scholar] [CrossRef]
- Alonso-Ayuso, M.; Gabriel, J.L.; Quemada, M. The Kill Date as a Management Tool for Cover Cropping Success. PLoS ONE 2014, 9, e109587. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Ghahramani, A.; Ali, A.; Erbacher, A. Cover Cropping Impacts on Soil Water and Carbon in Dryland Cropping System. PLoS ONE 2023, 18, e0286748. [Google Scholar] [CrossRef]
- Van Wart, J.; van Bussel, L.G.J.; Wolf, J.; Licker, R.; Grassini, P.; Nelson, A.; Boogaard, H.; Gerber, J.; Mueller, N.D.; Claessens, L.; et al. Use of Agro-Climatic Zones to Upscale Simulated Crop Yield Potential. F. Crop. Res. 2013, 143, 44–55. [Google Scholar] [CrossRef]
- Zhang, J.; Cai, J.; Xu, D.; Chang, H.; Zhang, B.; Wei, Z. Regional Detection and Assessment of Chilling Damage on Maize Considering Land Surface Temperature, Crop Growth Status and Solar Radiation Changes. J. Agron. Crop Sci. 2024, 210, e12687. [Google Scholar] [CrossRef]
- Metzger, M.J.; Bunce, R.G.H.; Jongman, R.H.G.; Mücher, C.A.; Watkins, J.W. A Climatic Stratification of the Environment of Europe. Glob. Ecol. Biogeogr. 2005, 14, 549–563. [Google Scholar] [CrossRef]
- Chuchma, F.; Středova, H. Discrepancy in Climatic Zoning of the Current Soil Productivity Evaluation System. Contrib. to Geophys. Geod. 2015, 45, 255–268. [Google Scholar] [CrossRef]
- Středová, H.; Fukalová, P.; Chuchma, F.; Haberle, J.; Středa, T. Nitrates Directive Restriction: To Change or Not to Change in Terms of Climate Change, That Is the Question. Sci. Total Environ. 2024, 917, 170381. [Google Scholar] [CrossRef]
- Trnka, M.; Balek, J.; Brázdil, R.; Dubrovský, M.; Eitzinger, J.; Hlavinka, P.; Chuchma, F.; Možný, M.; Prášil, I.; Růžek, P.; et al. Observed Changes in the Agroclimatic Zones in the Czech Republic between 1961 and 2019. Plant Soil Environ. 2021, 67, 154–163. [Google Scholar] [CrossRef]
- Mozny, M.; Hajkova, L.; Vlach, V.; Ouskova, V.; Musilova, A. Changing Climatic Conditions in Czechia Require Adaptation Measures in Agriculture. Climate 2023, 11, 210. [Google Scholar] [CrossRef]
- Snapp, S.S.; Swinton, S.M.; Labarta, R.; Mutch, D.; Black, J.R.; Leep, R.; Nyiraneza, J.; O’Neil, K. Evaluating Cover Crops for Benefits, Costs and Performance within Cropping System Niches. Agron. J. 2005, 97, 322–332. [Google Scholar] [CrossRef]
- Štěpánek, P. ProClimDB–Software for Processing Climatological Datasets. In Proceedings of the 6th Seminar for Homogenization and Quality Control in Climatological Databases, Budapest, Hungary, 26–30 May 2008. [Google Scholar]
- Štěpánek, P.P.Z.; Farda, A. Experiences with Data Quality Control and Homogenization of Daily Records of Various Meteorological Elements in the Czech Republic in the Period 1961–2010. Idöjárás 2013, 17, 123–141. [Google Scholar]
- Tolasz, R.; Míková, T.; Valeriánová, A.; Voženílek, V. Climate Atlas of Czechia; Czech Hydrometeorological Institute: Prague, Czech Republic, 2007; ISBN 978-80-86690-1. [Google Scholar]
- Teixeira, E.I.; Johnstone, P.; Chakwizira, E.; de Ruiter, J.; Malcolm, B.; Shaw, N.; Zyskowski, R.; Khaembah, E.; Sharp, J.; Meenken, E.; et al. Sources of Variability in the Effectiveness of Winter Cover Crops for Mitigating N Leaching. Agric. Ecosyst. Environ. 2016, 220, 226–235. [Google Scholar] [CrossRef]
- Vos, J.; Van Der Putten, P.E.L. Field Observations on Nitrogen Catch Crops. I. Potential and Actual Growth and Nitrogen Accumulation in Relation to Sowing Date and Crop Species. Plant Soil 1997, 195, 299–309. [Google Scholar] [CrossRef]
- Brázdil, R.; Zahradníček, P.; Dobrovolný, P.; Řehoř, J.; Trnka, M.; Lhotka, O.; Štěpánek, P. Circulation and Climate Variability in the Czech Republic between 1961 and 2020: A Comparison of Changes for Two “Normal” Periods. Atmosphere 2022, 13, 137. [Google Scholar] [CrossRef]
- Trnka, M.; Eitzinger, J.; Hlavinka, P.; Dubrovský, M.; Semerádová, D.; Štěpánek, P.; Thaler, S.; Žalud, Z.; Možný, M.; Formayer, H. Climate-Driven Changes of Production Regions in Central Europe. Plant Soil Environ. 2009, 55, 257–266. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse Weather Conditions for European Wheat Production Will Become More Frequent with Climate Change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Chuchma, F.; Stredova, H.; Streda, T. Bioindication of Climate Development on the Basis of Long-Term Phenological Observation. In Proceedings of the MendelNet 2016: Proceedings of International PhD Students Conference, Mendel University, Brno, Czech Republic, 9–10 November 2016; pp. 380–383. [Google Scholar]
- Bartošová, L.; Hájková, L.; Pohanková, E.; Možný, M.; Balek, J.; Zahradníček, P.; Štěpánek, P.; Dížková, P.; Trnka, M.; Žalud, Z. Differences in Phenological Term Changes in Field Crops and Wild Plants–Do They Have the Same Response to Climate Change in Central Europe ? Int. J. Biometeorol. 2024, preprint. [Google Scholar] [CrossRef] [PubMed]
- Peltonen-Sainio, P.; Palosuo, T.; Ruosteenoja, K.; Jauhiainen, L.; Ojanen, H. Warming Autumns at High Latitudes of Europe: An Opportunity to Lose or Gain in Cereal Production? Reg. Environ. Chang. 2018, 18, 1453–1465. [Google Scholar] [CrossRef]
- Duiker, S.W. Establishment and Termination Dates Affect Fall-Established Cover Crops. Agron. J. 2014, 106, 670–678. [Google Scholar] [CrossRef]
- Baraibar, B.; Murrell, E.G.; Bradley, B.A.; Barbercheck, M.E.; Mortensen, D.A.; Kaye, J.P.; White, C.M. Cover Crop Mixture Expression Is Influenced by Nitrogen Availability and Growing Degree Days. PLoS ONE 2020, 15, e0235868. [Google Scholar] [CrossRef]
- Krstić, D.; Vujić, S.; Jaćimović, G.; D’Ottavio, P.; Radanović, Z.; Erić, P.; Ćupina, B. The Effect of Cover Crops on Soil Water Balance in Rain-Fed Conditions. Atmosphere 2018, 9, 492. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K. Are Differences in Root Growth of Nitrogen Catch Crops Important for Their Ability to Reduce Soil Nitrate-N Content, and How Can This Be Measured? Plant Soil 2001, 230, 185–195. [Google Scholar] [CrossRef]
- Wagger, M.G.; Cabrera, M.L.; Ranells, N.N. Nitrogen and Carbon Cycling in Relation to Cover Crop Residue Quality. J. Soil Water Conserv. 1998, 53, 214–218. [Google Scholar]
- Storr, T.; Simmons, R.W.; Hannam, J.A. Using Frost-Sensitive Cover Crops for Timely Nitrogen Mineralization and Soil Moisture Management. Soil Use Manag. 2021, 37, 427–435. [Google Scholar] [CrossRef]
- Tadiello, T.; Potenza, E.; Marino, P.; Perego, A.; Torre, D.D.; Michelon, L.; Bechini, L. Growth, Weed Control, and Nitrogen Uptake of Winter-Killed Cover Crops, and Their Effects on Maize in Conservation Agriculture. Agron. Sustain. Dev. 2022, 42, 18. [Google Scholar] [CrossRef]
- Thorup-Kristensen, K.; Dresbøll, D.B. Incorporation Time of Nitrogen Catch Crops Influences the N Effect for the Succeeding Crop. Soil Use Manag. 2010, 26, 27–35. [Google Scholar] [CrossRef]
- Olofsson, F.; Ernfors, M. Frost Killed Cover Crops Induced High Emissions of Nitrous Oxide. Sci. Total Environ. 2022, 837, 155634. [Google Scholar] [CrossRef]
- Thomsen, I.K.; Elsgaard, L.; Olesen, J.E.; Christensen, B.T. Nitrogen Release from Differently Aged Raphanus Sativus L. Nitrate Catch Crops during Mineralization at Autumn Temperatures. Soil Use Manag. 2016, 32, 183–191. [Google Scholar] [CrossRef]
- Constantin, J.; Minette, S.; Vericel, G.; Jordan-Meille, L.; Justes, E. MERCI: A Simple Method and Decision-Support Tool to Estimate Availability of Nitrogen from a Wide Range of Cover Crops to the next Cash Crop. Plant Soil 2024, 494, 333–351. [Google Scholar] [CrossRef]
- Vogeler, I.; Böldt, M.; Taube, F. Mineralisation of Catch Crop Residues and N Transfer to the Subsequent Crop. Sci. Total Environ. 2022, 810, 152142. [Google Scholar] [CrossRef]
- Gentsch, N.; Heuermann, D.; Boy, J.; Schierding, S.; Von Wirén, N.; Schweneker, D.; Feuerstein, U.; Kümmerer, R.; Bauer, B.; Guggenberger, G. Soil Nitrogen and Water Management by Winter-Killed Catch Crops. Soil 2022, 8, 269–281. [Google Scholar] [CrossRef]
- Nowak, B.; Michaud, A.; Marliac, G. Soil-Climate Factors Have a Greater Influence on the Presence of Winter Cover Crops than Regulatory Constraints in France. Agron. Sustain. Dev. 2022, 42, 28. [Google Scholar] [CrossRef]
- Maclean, I.M.D.; Duffy, J.P.; Haesen, S.; Govaert, S.; De Frenne, P.; Vanneste, T.; Lenoir, J.; Lembrechts, J.J.; Rhodes, M.W.; Van Meerbeek, K. On the Measurement of Microclimate. Methods Ecol. Evol. 2021, 12, 1397–1410. [Google Scholar] [CrossRef]
Scenario | Sowing | Termination | Duration of Growth and Temperature Summation | |
---|---|---|---|---|
A | The common date of sowing on farms and the earliest allowed date of CC termination | August 20 | November 1 | 74 days |
B | The sowing date according to the earliest allowed date of CC termination and 8 weeks of growth | September 6 | November 1 | 56 days |
C | Delayed sowing date and 8 weeks of growth | September 20 | November 15 | 56 days |
Scenario/Date of Sowing | ||||
---|---|---|---|---|
Statistical Parameter or Correlation | Unit | A/August 20 | B/September 6 | C/September 20 |
Average | °C | 825.5 | 562.2 | 447.3 |
Minimum value (min) | °C | 623.5 | 406.6 | 272.2 |
Maximum value (max) | °C | 956.3 | 691.2 | 575.0 |
Difference between max and min | °C | 332.8 | 284.6 | 302.7 |
Median | °C | 814.5 | 557.4 | 450.0 |
Standard deviation | °C | 69.5 | 61.9 | 62.3 |
Coefficient of variance (CV) | % | 8.42 | 11.01 | 13.94 |
Skew | - | −0.19 | −0.07 | −0.27 |
Kurtosis | - | −0.31 | −0.49 | −0.04 |
Lower quartile (25%) | °C | 765.0 | 515.9 | 414.8 |
Upper quartile (75%) | °C | 886.8 | 612.3 | 488.2 |
Linear trend | °C per year | 1.60 | 0.87 | 0.97 |
p-value of t-test | - | 0.001 | 0.058 | 0.036 |
Average for 1961 | °C | 778.3 | 536.5 | 418.7 |
Average for 2020 | °C | 872.8 | 588.0 | 475.9 |
Correlation | ||||
Average SET and altitude of sites | - | −0.95 | −0.95 | −0.95 |
Average SET and average annual temperature | - | 0.99 | 0.99 | 0.98 |
Trends in average SET and altitude | - | −0.42 | −0.43 | −0.43 |
Trends in average SET and annual temperature | - | 0.40 | 0.41 | 0.40 |
CV of SET and altitude | - | 0.88 | 0.93 | 0.92 |
CV of SET and average annual temperature | - | −0.90 | −0.95 | −0.95 |
Statistical Parameter | Average at 2 m | Minimum at 2 m | Minimum at Ground Level | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Or Correlation | Unit | FRST0 | FRST-3 | FRST-5 | FRST0 | FRST-3 | FRST-5 | FRST0 | FRST-3 | FRST-5 |
Average | DOY | 316 | 334 | 341 | 287 | 309 | 324 | 266 | 290 | 303 |
Difference compared to FRST0 | Days | 18 | 25 | 22 | 37 | 24 | 37 | |||
Difference compared to Average at 2 m | Days | 29.3 | 25.0 | 17.1 | 50.2 | 44.1 | 37.6 | |||
Difference compared to Minimum at 2 m | Days | 20.9 | 19.1 | 20.5 | ||||||
Minimum value (min) | DOY | 296 | 311 | 319 | 268 | 288 | 296 | 247 | 272 | 285 |
Maximum value (max) | DOY | 344 | 355 | 360 | 307 | 338 | 351 | 288 | 309 | 330 |
Difference between max and min | Days | 48 | 44 | 41 | 38 | 49 | 55 | 41 | 36 | 44 |
Median | DOY | 317 | 333 | 341 | 286 | 310 | 324 | 266 | 289 | 304 |
Standard deviation | Days | 9.4 | 11.0 | 10.8 | 8.9 | 11.4 | 12.1 | 9.2 | 9.8 | 10.6 |
Coefficient of variance | % | 327 | 349 | 356 | 299 | 323 | 340 | 278 | 306 | 317 |
Lower quartile (25%) | DOY | 310 | 327 | 333 | 281 | 301 | 316 | 261 | 283 | 296 |
Upper quartile (75%) | DOY | 322 | 342 | 349 | 293 | 316 | 332 | 272 | 297 | 308 |
Linear trend | Days per year | 0.05 | 0.11 | 0.10 | 0.09 | 0.10 | 0.10 | 0.10 | 0.06 | 0.07 |
p-value of t-test | - | 0.44 | 0.18 | 0.22 | 0.20 | 0.24 | 0.29 | 0.17 | 0.40 | 0.42 |
Average for 1961 | DOY | 315 | 331 | 338 | 284 | 306 | 321 | 263 | 288 | 301 |
Average for 2020 | DOY | 318 | 337 | 344 | 289 | 312 | 327 | 269 | 292 | 305 |
Correlation | ||||||||||
FRST and average annual temperature | - | −0.95 | −0.96 | −0.92 | −0.63 | −0.63 | −0.72 | −0.55 | −0.45 | −0.39 |
FRST and altitude | - | 0.97 | 0.96 | 0.92 | 0.71 | 0.70 | 0.79 | 0.64 | 0.54 | 0.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haberle, J.; Chuchma, F.; Raimanova, I.; Wollnerova, J. Agroclimatic Zoning of Temperature Limitations for Growth of Stubble Cover Crops. Climate 2025, 13, 15. https://doi.org/10.3390/cli13010015
Haberle J, Chuchma F, Raimanova I, Wollnerova J. Agroclimatic Zoning of Temperature Limitations for Growth of Stubble Cover Crops. Climate. 2025; 13(1):15. https://doi.org/10.3390/cli13010015
Chicago/Turabian StyleHaberle, Jan, Filip Chuchma, Ivana Raimanova, and Jana Wollnerova. 2025. "Agroclimatic Zoning of Temperature Limitations for Growth of Stubble Cover Crops" Climate 13, no. 1: 15. https://doi.org/10.3390/cli13010015
APA StyleHaberle, J., Chuchma, F., Raimanova, I., & Wollnerova, J. (2025). Agroclimatic Zoning of Temperature Limitations for Growth of Stubble Cover Crops. Climate, 13(1), 15. https://doi.org/10.3390/cli13010015