ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction
Abstract
:1. Introduction
2. Bayesian Principle to Empirical Risk Loss of Mixture Noise
3. Model -SVR of Gauss-Laplace Mixture Noise
3.1. Model -SVR of Gauss-Laplace Mixture Homoscedastic Noise
3.2. Model -SVR of Gauss-Laplace Mixture Heteroscedastic Noise
4. Solution Based on the Augmented Lagrange Multiplier Method
5. Case Study
5.1. Analysis of Wind Speed Mixture Noise Characteristics
5.2. Evaluation Criteria for Forecasting Performance
5.3. Short-Term Wind Speed Prediction of Real Dataset
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
SVR | Support vector regression |
GLM-SVR | SVR model of Gauss-Laplace mixture heteroscedastic noise |
GLMH-SVR | SVR model of Gauss-Laplace mixture homoscedastic noise |
GN-SVR | SVR model of Gauss homoscedastic noise |
ALM | augmented Lagrange multiplier method |
Appendix A
References
- European Wind Energy Association, Wind Force 12. Available online: http://www.ewea.org/doc/WindForce12 (accessed on 14 March 2011).
- Sfetsos, A. A comparison of various forecasting techniques applied to mean hourly wind speed time series. Renew. Energy 2008, 21, 23–35. [Google Scholar] [CrossRef]
- Calif, R.; Schmitt, F. Modeling of atmospheric wind speed sequence using a lognormal continuous stochastic equation. J. Wind Eng. Inst. Aerodyn. 2012, 109, 1–8. [Google Scholar] [CrossRef]
- Calif, R.; Schmitt, F. Multiscaling and joint multiscaling of the atmospheric wind speed and the aggregate power output from a wind farm. Nonlinear Process. Geophys. 2014, 21, 379–392. [Google Scholar] [CrossRef]
- Jung, J.; Broadwater, R.P. Current status and future advances for wind speed and power forecasting. Renew. Sustain. Energy Rev. 2014, 31, 762–777. [Google Scholar] [CrossRef]
- Zhang, C.; Wei, H.; Zhao, J.; Liu, T.; Zhu, T.; Zhang, K. Short-term wind speed forecasting using empirical mode decomposition and feature selection. Renew. Energy 2016, 96, 727–737. [Google Scholar] [CrossRef]
- Wang, Y.; Hu, Q.H.; Li, L.H.; Foley, A.M.; Srinivasan, D. Approaches to wind power curve modeling: A review and discussion. Renew. Sustain. Energy Rev. 2019, 116, 109422. [Google Scholar] [CrossRef]
- Wang, J.Z.; Zhang, N.; Lu, H.Y. A novel system based on neural networks with linear combination framework for wind speed forecasting. Energy Convers. Manag. 2019, 181, 425–442. [Google Scholar] [CrossRef]
- Sun, L.; Liu, R.N.; Xu, J.C.; Zhang, S.G. An adaptive density peaks clustering method with Fisher linear discriminant. IEEE Access. 2019, 7, 72936–72955. [Google Scholar] [CrossRef]
- Sun, L.; Wang, L.Y.; Qian, Y.H.; Xu, J.C.; Zhang, S.G. Feature selection using Lebesgue and entropy measures for incomplete neighborhood decision systems. Knowl.-Based Syst. 2019, 2019, 104942. [Google Scholar] [CrossRef]
- Sun, L.; Xu, J.C.; Liu, S.W.; Zhang, S.G.; Li, Y.; Shen, C.A. A robust image watermarking scheme using Arnold transform and BP neural network. Neural Comput. Appl. 2018, 30, 2425–2440. [Google Scholar] [CrossRef]
- Liu, Z.T.; Li, C.G. Censored regression with noisy input. IEEE Trans. Signal Process. 2015, 63, 5071–5082. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, X.Y.; Qian, Y.H.; Xu, J.C.; Zhang, S.G.; Tian, Y. Joint neighborhood entropy-based gene selection method with fisher score for tumor classification. Appl. Intell. 2019, 49, 1245–1259. [Google Scholar] [CrossRef]
- Wu, Q. A hybrid-forecasting model based on Gaussian support vector machine and chaotic particle swarm optimization. Expert Syst. Appl. 2010, 37, 2388–2394. [Google Scholar] [CrossRef]
- Wu, Q.; Law, R. The forecasting model based on modified SVRM and PSO penalizing gaussian noise. Expert Syst. Appl. 2011, 38, 1887–1894. [Google Scholar] [CrossRef]
- Meng, D.Y.; Torre, F.D.L. Robust matrix factorization with unknown noise. In Proceedings of the IEEE International Conference on Computer Vision (ICCV 2013), Sydney, Australia, 1–8 December 2013. [Google Scholar]
- Hu, Q.H.; Zhang, S.G.; Xie, Z.X.; Mi, J.S.; Wan, J. Noise model based ν-Support vector regression with its application to short-term wind speed forecasting. Neural Netw. 2014, 57, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.G.; Hu, Q.H.; Xie, Z.X.; Mi, J.S. Kernel ridge regression for general noise model with its application. Neurocomputing 2015, 149, 836–846. [Google Scholar] [CrossRef]
- Hu, Q.H.; Zhang, S.G.; Yu, M.; Xie, Z.X. Short-term wind speed or power forecasting with heteroscedastic support vector regression. IEEE Trans. Sustain. Energy 2016, 7, 241–249. [Google Scholar] [CrossRef]
- Ma, C.F. Optimization Method and the Matlab Programing Design; Science Press: Beijing, China, 2010; pp. 121–131. [Google Scholar]
- Schölkopf, B.; Smola, A.J.; Williamson, R.C.; Bartlett, P.L. New support vector algorithms. Neural Comput. 2000, 12, 1207–1245. [Google Scholar]
- Suykens, J.A.K.; Lukas, L.; Vandewalle, J. Sparse approximation using least square vector machines. In Proceedings of the IEEE International Symposium on Circuits and Systems, Genvea, Switzerland, 28–31 May 2000; pp. 757–760. [Google Scholar]
- Suykens, J.A.K.; Van Gestel, T.; Brabanter, J.D.; Moor, B.D.; Vandewalle, J. Least Squares Support Vector Machines; World Scientific: Singapore, 2002. [Google Scholar]
- Pontil, M.; Mukherjee, S.; Girosi, F. On the Noise Model of Support Vector Machines Regression; A.I. Memo 1651; Center for Biological and Computational Learning: Cambridge, MA, USA, 2000; pp. 316–324. [Google Scholar]
- Bofinger, S.; Luig, A.; Beyer, H.G. Qualification of wind power forecasts. In Proceedings of the Global Wind Power Conference (GWPC 2002), Paris, France, 2–5 April 2002. [Google Scholar]
- Zhang, Y.; Wan, Q.; Zhao, H.P.; Yang, W.L. Support vector regression for basis selection in Laplacian noise environment. IEEE Signal Lett. 2007, 14, 871–874. [Google Scholar] [CrossRef]
- Randazzo, A.; Abou-Khousa, M.A.; Pastorino, M.; Zoughi, R. Direction of arrival estimation based on support Vector regression: Experimental Validation and Comparison with Music. IEEE Antennas Wirel. Propag. Lett. 2007, 6, 379–382. [Google Scholar] [CrossRef]
- Bludszuweit, H.; Antonio, J.; Llombart, A. Statistical analysis of wind power forecast error. IEEE Trans. Power Syst. 2008, 23, 983–991. [Google Scholar] [CrossRef]
- Jiang, P.; Li, P.Z. Research and Application of a New Hybrid Wind Speed Forecasting Model on BSO algorithm. J. Energy Eng. 2017, 143, 04016019. [Google Scholar] [CrossRef]
- Bishop, C.M. Pattern Recognition and Machine Learning; Springer: New York, NY, USA, 2006. [Google Scholar]
- Du, P.; Wang, J.Z.; Guo, Z.H.; Yang, W.D. Research and application of a novel hybrid forecasting system based on multi-objective optimization for wind speed forecasting. Energy Convers. Manag. 2017, 150, 90–107. [Google Scholar] [CrossRef]
- Jiang, Y.; Huang, G.Q. A hybrid method based on singular spectrum analysis, firefly algorithm, and BP neural network for short-term wind speed forecasting. Energies 2016, 9, 757. [Google Scholar]
- Jiang, Y.; Huang, G.Q. Short-term wind speed prediction: Hybrid of ensemble empirical mode decomposition, feature selection and error correction. Energy Convers. Manag. 2017, 144, 340–350. [Google Scholar] [CrossRef]
- Wang, H.B.; Wang, Y.; Hu, Q.H. Self-adaptive robust nonlinear regression for unknown noise via mixture of Gaussians. Neurocomputing 2017, 235, 274–286. [Google Scholar] [CrossRef]
- Shevade, S.K.; Keerthi, S.S.; Bhattacharyya, C.; Murthy, K.R.K. Improvements to the SMO Algorithm for SVM Regression. IEEE Trans. Neural Netw. 2000, 11, 1188–1193. [Google Scholar] [CrossRef]
- Chu, W.; Keerthi, S.S.; Ong, C.J. Bayesian support vector regression using a unified loss function. IEEE Trans. Neural Netw. 2004, 22, 29–44. [Google Scholar] [CrossRef]
- Klaus-Robert Sebastia, M.M. An introduction to kernel-based learning algorithms. IEEE Trans. Neural Netw. 2001, 12, 181–202. [Google Scholar]
- Sun, L.; Liu, R.N.; Xu, J.C.; Zhang, S.G.; Tian, Y. An affinity propagation clustering method using hybrid kernel function with LLE. IEEE Access 2018, 6, 68892–68909. [Google Scholar] [CrossRef]
- Rockafellar, R.T. The multiplier method of Hestenes and Powell applied to convex programming. J. Optim. Theory Appl. 1973, 12, 555–562. [Google Scholar] [CrossRef]
- Rockafellar, R.T. Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming. SIAM J. Control 1974, 12, 268–285. [Google Scholar] [CrossRef]
- Sun, L.; Chen, S.S.; Xu, J.C.; Tian, Y. Improved Monarch Butterfly Optimization algorithm based on opposition-based learning and random local perturbation. Complexity 2019, 2019, 4182148. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004; pp. 521–620. [Google Scholar]
- Wang, S.X.; Zhang, N.; Wu, L.; Wang, Y.M. Wind speed forecasting based on the hybrid ensemble empirical mode decomposition and GA-BP neural network method. Renew. Energy 2016, 94, 629–636. [Google Scholar] [CrossRef]
- Léon, B. Large-Scale Machine Learning with Stochastic Gradient Descent. In Proceedings of the 19th International Conference on Computational Statistics (COMPSTAT’2010), Paris, France, 22–27 August 2010. [Google Scholar]
- Fabbri, A.; Román, T.G.S.; Abbad, J.R.; Quezada, V.H.M. Assessment of the cost associated with wind generation prediction errors in a liberalized electricity market. IEEE Trans. Power Syst. 2005, 20, 1440–1446. [Google Scholar] [CrossRef]
- Guo, Z.H.; Zhao, J.; Zhang, W.Y.; Wang, J.Z. A corrected hybrid approach for wind speed prediction in Hexi Corridor of China. Energy 2011, 36, 1668–1679. [Google Scholar] [CrossRef]
- Wang, J.Z.; Hu, J.M. A robust combination approach for short-term wind speed forecasting and analysis-Combination of the ARIMA, ELM, SVM and LSSVM forecasts using a GPR model. Energy 2015, 93, 41–56. [Google Scholar] [CrossRef]
- Xiu, C.B.; Guo, F.H. Wind speed prediction by chaotic operator network based on Kalman Filter. Sci. China Technol. Sci. 2013, 56, 1169–1176. [Google Scholar] [CrossRef]
- Abdoos, A.A. A new intelligent method based on combination of VMD and ELM for short term wind power forecasting. Neurocomputing 2016, 203, 111–120. [Google Scholar] [CrossRef]
- Chalimourda, A.; Schölkopf, B.; Smola, A.J. Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural Netw. 2004, 17, 127–141. [Google Scholar] [CrossRef]
- Cherkassky, V.; Ma, Y. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Netw. 2004, 17, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Sun, L.; Zhang, X.Y.; Qian, Y.H.; Xu, J.C.; Zhang, S.G. Feature selection using neighborhood entropy-based uncertainty measures for gene expression data classification. Inf. Sci. 2019, 502, 18–41. [Google Scholar] [CrossRef]
Model | MAE (m/s) | RMSE (m/s) | MAPE (%) | SEP (%) |
---|---|---|---|---|
-SVR | 0.3671 | 0.4854 | 2.84 | 3.84 |
GN-SVR | 0.3641 | 0.4845 | 2.77 | 3.83 |
GLM-SVR | 0.3616 | 0.4813 | 2.76 | 3.81 |
Model | MAE (m/s) | RMSE (m/s) | MAPE (%) | SEP (%) |
---|---|---|---|---|
-SVR | 0.5655 | 0.7631 | 4.44 | 6.08 |
GN-SVR | 0.5577 | 0.7589 | 4.36 | 6.04 |
GLM-SVR | 0.5468 | 0.7773 | 4.08 | 6.19 |
Model | MAE (m/s) | RMSE (m/s) | MAPE (%) | SEP (%) |
---|---|---|---|---|
-SVR | 0.6281 | 0.9142 | 4.70 | 7.32 |
GN-SVR | 0.6146 | 0.8711 | 4.61 | 6.98 |
GLM-SVR | 0.5920 | 0.8734 | 4.52 | 7.07 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Zhou, T.; Sun, L.; Wang, W.; Wang, C.; Mao, W. ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction. Entropy 2019, 21, 1056. https://doi.org/10.3390/e21111056
Zhang S, Zhou T, Sun L, Wang W, Wang C, Mao W. ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction. Entropy. 2019; 21(11):1056. https://doi.org/10.3390/e21111056
Chicago/Turabian StyleZhang, Shiguang, Ting Zhou, Lin Sun, Wei Wang, Chuan Wang, and Wentao Mao. 2019. "ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction" Entropy 21, no. 11: 1056. https://doi.org/10.3390/e21111056
APA StyleZhang, S., Zhou, T., Sun, L., Wang, W., Wang, C., & Mao, W. (2019). ν-Support Vector Regression Model Based on Gauss-Laplace Mixture Noise Characteristic for Wind Speed Prediction. Entropy, 21(11), 1056. https://doi.org/10.3390/e21111056