Fractional Lotka-Volterra-Type Cooperation Models: Impulsive Control on Their Stability Behavior
Abstract
:1. Introduction
2. Fractional Lotka-Volterra-Type Model and Preliminary Notes
3. Mittag-Leffler Stability Results
- 1.
- The model’s parameters satisfy
- 2.
- The impulsive functions are such thatThen, the state of system (5) is globally Mittag-Leffler stable.
4. Practical Stability Results
5. Stability of Sets
6. Examples and Simulations
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Ahmad, S.; Stamova, I.M. (Eds.) Lotka-Volterra and Related Systems: Recent Developments in Population Dynamics, 1st ed.; Walter de Gruyter: Berlin, Germany, 2013; ISBN 978-3-11-026951-2. [Google Scholar]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics, 1st ed.; Springer: Boston, MA, USA, 1992; ISBN 978-90-481-4119-7. [Google Scholar]
- Takeuchi, Y. Global Dynamical Properties of Lotka-Volterra Systems, 1st ed.; World Scientific: Singapore, 1996; ISBN 9810224710/9789810224714. [Google Scholar]
- Zhang, T.; Yang, L.; Xu, L. Stage-structured control on a class of predator-prey system in almost periodic environment. Intern. J. Control 2020, 93, 1442–1460. [Google Scholar] [CrossRef]
- Wei, F.; Wang, K. Asymptotically periodic solution of n-species cooperation system with time delay. Nonlinear Anal. Real World Appl. 2006, 7, 591–596. [Google Scholar] [CrossRef]
- May, R.M. Theoretical Ecology. Principles and Applications, 1st ed.; Saunders: Philadelphia, PA, USA, 1976; ISBN 0721662056/978-0721662053. [Google Scholar]
- Chen, F.; Liao, X.; Huang, Z. The dynamic behavior of N-species cooperation system with continuous time delays and feedback controls. Appl. Math. Comput. 2006, 181, 803–815. [Google Scholar] [CrossRef]
- Xu, R.; Chaplain, M.A.J.; Davidson, F.A. Global asymptotic stability of periodic solution for a cooperative system with time delays. Indian J. Pure Appl. Math. 2004, 35, 915–936. [Google Scholar]
- Yang, P.; Xu, R. Global asymptotic stability of periodic solution in n-species cooperative system with time delays. J. Biomath. 1998, 13, 841–846. [Google Scholar]
- Baez, J.C.; Pollard, B.S. Relative entropy in biological systems. Entropy 2016, 18, 46. [Google Scholar] [CrossRef]
- Rachdi, M.; Waku, D.; Hazgui, H.; Demongeot, J. Entropy as a robustness marker in genetic regulatory networks. Entropy 2020, 22, 260. [Google Scholar] [CrossRef] [Green Version]
- finnegan, A.; Song, J.S. Maximum entropy methods for extracting the learned features of deep neural networks. PLoS Comput. Biol. 2017, 13, e1005836. [Google Scholar] [CrossRef]
- Ahmad, S.; Stamova, I.M. Asymptotic stability of an n-dimensional impulsive competitive system. Nonlinear Anal. 2007, 8, 654–663. [Google Scholar] [CrossRef]
- Ballinger, G.; Liu, X. Permanence of population growth models with impulsive effects. Math. Comput. Model. 1997, 26, 59–72. [Google Scholar] [CrossRef]
- Dai, C.; Zhao, M.; Chen, L. Complex dynamic behavior of three-species ecological model with impulse perturbations and seasonal disturbances. Math. Comput. Simulation 2012, 84, 83–97. [Google Scholar] [CrossRef]
- Dong, L.; Chen, L.; Sun, L. Extinction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively. Math. Methods Appl. Sci. 2006, 29, 415–425. [Google Scholar] [CrossRef]
- Dong, L.; Takeuchi, Y. Impulsive control of multiple Lotka-Volterra systems. Nonlinear Anal. Real World Appl. 2013, 14, 1144–1154. [Google Scholar] [CrossRef]
- Struk, O.O.; Tkachenko, V. On impulsive Lotka-Volterra systems with diffusion. Ukr. Math. J. 2002, 54, 629–646. [Google Scholar] [CrossRef]
- Tang, S.; Chen, L. The periodic predator-prey Lotka-Volterra model with impulsive effects. J. Mech. Med. Biol. 2002, 2, 267–296. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Q.; Bai, Y. Permanence and almost periodic solutions for N-species nonautonomous Lotka-Volterra competitive systems with delays and impulsive perturbations on time scales. Complexity 2018, 2018, 2658745. [Google Scholar] [CrossRef] [Green Version]
- Stamova, I.M. Impulsive control for stability of n-species Lotka-Volterra cooperation models with finite delays. Appl. Math. Lett. 2010, 23, 1003–1007. [Google Scholar] [CrossRef]
- Haddad, W.M.; Chellaboina, V.S.; Nersesov, S.G. Impulsive and Hybrid Dynamical Systems, Stability, Dissipativity, and Control, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2006; ISBN 9780691127156. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-28060-8/978-3-319-28061-5. [Google Scholar]
- Yang, X.; Peng, D.; Lv, X.; Li, X. Recent progress in impulsive control systems. Math. Comput. Simul. 2019, 155, 244–268. [Google Scholar] [CrossRef]
- Abbas, S.; Banerjee, M.; Momani, S. Dynamical analysis of fractional-order modified logistic model. Comput. Math. Appl. 2011, 62, 1098–1104. [Google Scholar] [CrossRef] [Green Version]
- Mohyud-Din, S.T.; Ali, A.; Bin-Mohsin, B. On biological population model of fractional order. Int. J. Biomath. 2016, 9, 1650070. [Google Scholar] [CrossRef]
- Teka, W.; Marinov, T.; Santamaria, F. Neuronal spike timing adaptation described with a fractional leaky integrate-and-fire model. PLoS Comput. Biol. 2014, 10, e1003526. [Google Scholar] [CrossRef] [PubMed]
- Vázquez-Guerrero, P.; Gómez-Aguilar, J.F.; Santamaria, F.; Escobar-Jiméneza, R.F. Design of a high-gain observer for the synchronization of chimera states in neurons coupled with fractional dynamics. Physical A 2020, 539, 122896. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Srivastava, M.; Das, S. Synchronization between fractional-order Ravinovich-Fabrikant and Lotka-Volterra systems. Nonlinear Dyn. 2012, 69, 2277–2288. [Google Scholar] [CrossRef]
- Das, S.K.; Gupta, P.K. A mathematical model on fractional Lotka-Volterra equations. J. Theor. Biol. 2011, 277, 1–6. [Google Scholar] [CrossRef]
- Gatabazi, P.; Mba, J.C.; Pindza, E. Fractional gray Lotka-Volterra models with application to cryptocurrencies adoption. Chaos 2019, 29, 073116. [Google Scholar] [CrossRef]
- Jun, Z.; Kim, C.-G. Positive solutions for a Lotka-Volterra prey-predator model with cross-diffusion of fractional type. Results Math. 2014, 65, 293–320. [Google Scholar] [CrossRef]
- Matlob, M.A.; Towers, I.N.; Jovanoski, Z.; Irwin, A.J. Memory and mutualism in species sustainability: A time-fractional Lotka-Volterra model with harvesting. arXiv 2020, arXiv:1904.12340v2. [Google Scholar]
- Wang, Y.; Liu, S. Fractal analysis and control of the fractional Lotka-Volterra model. Nonlinear Dyn. 2019, 95, 1457–1470. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2006; ISBN 0444518320/9780444518323. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: San Diego, CA, USA, 1999; ISBN 558840-2. [Google Scholar]
- Cattani, C.; Srivastava, H.M.; Yang, X.-J. (Eds.) Fractional Dynamics, 1st ed.; Springer: Berlin, Germany, 2015; ISBN 978-3-11-047209-7. [Google Scholar]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus. Models and Numerical Methods, 2nd ed.; World Scientific: Hackensack, NJ, USA, 2016; ISBN 9813140038/978-9813140035. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; CRC Press; Taylor and Francis Group: Boca Raton, MA, USA, 2017; ISBN 9781498764834. [Google Scholar]
- Zhang, T.; Xiong, L. Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl. Math. Lett. 2020, 101, 106072. [Google Scholar] [CrossRef]
- Debbouche, A.; Baleanu, D. Controllability of fractional evolution nonlocal impulsive quasilinear delay integro-differential systems. Comput. Math. Appl. 2011, 62, 1442–1450. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.; Stamova, I. Modelling and almost periodic processes in impulsive Lasota-Wazewska equations of fractional order with time-varying delays. Quaest. Math. 2017, 40, 1041–1057. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I. Impulsive delayed Lasota-Wazewska fractional models: Global stability of integral manifolds. Mathematics 2019, 7, 1025. [Google Scholar] [CrossRef] [Green Version]
- Stamov, G.; Stamova, I. On almost periodic processes in impulsive fractional-order competitive systems. J. Math. Chem. 2018, 56, 583–596. [Google Scholar] [CrossRef]
- Li, Y.; Chen, Y.; Podlubny, I. Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 2009, 45, 1965–1969. [Google Scholar] [CrossRef]
- Li, H.; Kao, Y.G. Mittag-Leffler stability for a new coupled system of fractional-order differential equations with impulses. Appl. Math. Comput. 2019, 361, 22–31. [Google Scholar] [CrossRef]
- Stamova, I.M. Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with time-varying delays. Nonlinear Dyn. 2014, 77, 1251–1260. [Google Scholar] [CrossRef]
- Zhang, X.; Niu, P.; Ma, Y.; Wei, Y.; Li, G. Global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition. Neural Netw. 2017, 94, 67–75. [Google Scholar] [CrossRef]
- Li, H.-L.; Zhang, L.; Hu, C.; Jiang, H.; Cao, J. Global Mittag-Leffler synchronization of fractional-order delayed quaternion-valued neural networks: Direct quaternion approach. Appl. Math. Comput. 2020, 373, 125020. [Google Scholar] [CrossRef]
- Pratap, A.; Raja, R.; Rajchakit, G.; Cao, J.; Bagdasar, O. Mittag-Leffler state estimator design and synchronization analysis for fractional-order BAM neural networks with time delays. Intern. J. Adapt. Control Signal Process. 2019, 33, 855–874. [Google Scholar] [CrossRef]
- Zhou, H.-C.; Lv, C.; Guo, B.-Z.; Chen, Y.Q. Mittag-Leffler stabilization for an unstable time-fractional anomalous diffusion equation with boundary control matched disturbance. Intern. J. Robust Nonlinear Control 2019, 29, 4384–4401. [Google Scholar] [CrossRef]
- Ding, X.; Cao, J.; Zhao, X.; Alsaadi, F.E. Mittag-Leffler synchronization of delayed fractional-order bidirectional associative memory neural networks with discontinuous activations: State feedback control and impulsive control schemes. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 2204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pratap, A.; Raja, R.; Sowmiya, C.; Bagdasar, O.; Cao, J.; Rajchakit, G. Robust generalized Mittag-Leffler synchronization of fractional order neural networks with discontinuous activation and impulses. Neural Netw. 2018, 103, 128–141. [Google Scholar] [CrossRef]
- Stamova, I.; Stamov, G. Mittag-Leffler synchronization of fractional neural networks with time-varying delays and reaction-diffusion terms using impulsive and linear controllers. Neural Netw. 2017, 96, 22–32. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, G.; Liu, X. Practical stability of impulsive delay differential equations and applications to control problems. In Optimization Methods and Applications. Applied Optimization; Yang, X., Teo, K.L., Caccetta, L., Eds.; Kluwer: Dordrecht, The Netherlands, 2001; Volume 52, pp. 3–21. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Martynyuk, A.A. Practical Stability of Nonlinear Systems; World Scientific: Teaneck, NJ, USA, 1990; ISBN 981-02-0351-9/981-02-0356-X. [Google Scholar]
- Yoshizawa, T. Asymptotic behavior of solutions of non-autonomous system near sets. J. Math. Kyoto Univ. 1962, 1, 303–323. [Google Scholar] [CrossRef]
- Çicek, M.; Yaker, C.; Gücen, M.B. Practical stability in terms of two measures for fractional order systems in Caputo’s sense with initial time difference. J. Frankl. Inst. 2014, 351, 732–742. [Google Scholar] [CrossRef]
- Bohner, M.; Stamova, I.; Stamov, G. Impulsive control functional differential systems of fractional order: Stability with respect to manifolds. Eur. Phys. J. Spec. Top. 2017, 226, 3591–3607. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.M.; Li, X.; Gospodinova, E. Practical stability with respect to h-manifolds for impulsive control functional differential equations with variable impulsive perturbations. Mathematics 2019, 7, 656. [Google Scholar] [CrossRef] [Green Version]
- Stamova, I.M.; Henderson, J. Practical stability analysis of fractional-order impulsive control systems. ISA Trans. 2016, 64, 77–85. [Google Scholar] [CrossRef]
- Hingu, D. Asymptotic stability of strongly uninvadable sets. Ann. Oper. Res. 2020, 287, 737–749. [Google Scholar] [CrossRef]
- Li, Y.; Sanfelice, R.G. finite time stability of sets for hybrid dynamical systems. Automatica 2019, 100, 200–211. [Google Scholar] [CrossRef] [Green Version]
- Mironchenko, A. Uniform weak attractivity and criteria for practical global asymptotic stability. Syst. Control Lett. 2017, 105, 92–99. [Google Scholar] [CrossRef] [Green Version]
- Stocker, C. Event-Based State-Feedback Control of Physically Interconnected Systems, 1st ed.; Logos: Berlin, Germany, 2014; ISBN 3832536825. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tuladhar, R.; Santamaria, F.; Stamova, I. Fractional Lotka-Volterra-Type Cooperation Models: Impulsive Control on Their Stability Behavior. Entropy 2020, 22, 970. https://doi.org/10.3390/e22090970
Tuladhar R, Santamaria F, Stamova I. Fractional Lotka-Volterra-Type Cooperation Models: Impulsive Control on Their Stability Behavior. Entropy. 2020; 22(9):970. https://doi.org/10.3390/e22090970
Chicago/Turabian StyleTuladhar, Rohisha, Fidel Santamaria, and Ivanka Stamova. 2020. "Fractional Lotka-Volterra-Type Cooperation Models: Impulsive Control on Their Stability Behavior" Entropy 22, no. 9: 970. https://doi.org/10.3390/e22090970