Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials
Abstract
:1. Introduction
2. Preliminaries
3. Proposed Recurrence Algorithm
3.1. Computing the Initial Value
3.2. The Fundamental Computation of the Initial Values
3.3. The Computation of the Initial Sets
3.4. Computation of the Coefficients Values for KP
3.4.1. Computation of the Coefficients Located at Part 1
3.4.2. Computation of the Coefficients Located at Part 2-1
3.4.3. Computation of the Coefficients Located at Part 2-2
3.4.4. Computation of the Coefficients Located at Part 2-3
3.5. Computation of the Rest of the KP Coefficients
3.6. Summary of the Proposed Algorithm
Algorithm 1 Computation of Krawtchouk polynomials using the proposed algorithm. | |
Input: | |
N represents the size of the Krawtchouk polynomial, | |
p represents the parameter of the Krawtchouk polynomials. | |
Output: | |
1: =False | |
2: ifthen | |
3: =True; | |
4: end if | |
5: , | |
6: Compute using (10) | |
7: Compute using (12) | |
8: Compute and using (16) and (17) | |
9: | ▹ Compute initial set |
10: for do | |
11: for do | |
12: Compute using (18) | |
13: end for | |
14: end for | |
15: | ▹ Compute coefficient values in Part 1 |
16: for do | |
17: for do▹ inner loop | |
18: Compute using (19) | |
19: if then | |
20: Exit inner loop | |
21: end if | |
22: end for | |
23: end for | |
24: | ▹ Compute coefficient values in Part 2-1 |
25: for do | |
26: for do | ▹ inner loop |
27: Compute using (21) | |
28: if then | |
29: Exit inner loop | |
30: end if | |
31: end for | |
32: end for | |
33: | ▹ Compute coefficient values in Part 2-2 |
34: for do | |
35: | |
36: Compute using (23) | |
37: end for | |
38: for do | |
39: | |
40: Compute using (26) | |
41: end for | |
42: | ▹ Compute coefficient values in Part 2-3 |
43: for do | |
44: for do | ▹ inner loop |
45: Compute using (21) | |
46: if then | |
47: Exit inner loop | |
48: end if | |
49: end for | |
50: end for | |
51: Compute the rest of the coefficients using the similarity relations (28) and (29) | |
52: if =True then | |
53: Apply (30) | |
54: end if |
4. Numerical Results and Analyses
4.1. Energy Compaction Analysis
4.2. Analysis of Reconstruction Error
4.3. Computation of the Cost Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. Proof of Equation (10)
References
- Chen, Y.; Lin, W.; Wen, Y.; Wang, B.; Zhang, S.; Zhang, Y.; Yu, S. Image Signal Transmission Passing over a Barrier enabled by Optical Accelerating Beams. In Imaging Systems and Applications; Optical Society of America: Washington, DC, USA, 2020; p. JF1E-5. [Google Scholar]
- Park, K.; Chae, M.; Cho, J.H. Image Pre-Processing Method of Machine Learning for Edge Detection with Image Signal Processor Enhancement. Micromachines 2021, 12, 73. [Google Scholar] [CrossRef]
- Xiao, H. A Nonlinear Modulation Algorithm based on Orthogonal Polynomial in MIMO Radar. In Proceedings of the 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Shanghai, China, 20–23 September 2020; pp. 1–3. [Google Scholar] [CrossRef]
- Radeaf, H.S.; Mahmmod, B.M.; Abdulhussain, S.H.; Al-Jumaeily, D. A steganography based on orthogonal moments. In ICICT ’19—International Conference on Information and Communication Technology; ACM Press: New York, NY, USA, 2019; pp. 147–153. [Google Scholar] [CrossRef]
- Naser, M.A.; Alsabah, M.; Mahmmod, B.M.; Noordin, N.K.; Abdulhussain, S.H.; Baker, T. Downlink Training Design for FDD Massive MIMO Systems in the Presence of Colored Noise. Electronics 2020, 9, 2155. [Google Scholar] [CrossRef]
- Alsabah, M.; Naser, M.A.; Mahmmod, B.M.; Noordin, N.K.; Abdulhussain, S.H. Sum Rate Maximization Versus MSE Minimization in FDD Massive MIMO Systems With Short Coherence Time. IEEE Access 2021, 9, 108793–108808. [Google Scholar] [CrossRef]
- Guido, R.C.; Pedroso, F.; Contreras, R.C.; Rodrigues, L.C.; Guariglia, E.; Neto, J.S. Introducing the Discrete Path Transform (DPT) and its applications in signal analysis, artefact removal, and spoken word recognition. Digit. Signal Process. 2021, 117, 103158. [Google Scholar] [CrossRef]
- Azam, M.H.; Berger, J.; Guernouti, S.; Poullain, P.; Musy, M. Parametric PGD model used with orthogonal polynomials to assess efficiently the building’s envelope thermal performance. J. Build. Perform. Simul. 2021, 14, 132–154. [Google Scholar] [CrossRef]
- Antonir, A.; Wijenayake, C.; Ignjatović, A. Acquisition of high bandwidth signals by sampling an analog chromatic derivatives filterbank. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, 22–28 May 2021; pp. 1–5. [Google Scholar] [CrossRef]
- Vlašić, T.; Ralašić, I.; Tafro, A.; Seršić, D. Spline-like Chebyshev polynomial model for compressive imaging. J. Vis. Commun. Image Represent. 2020, 66, 102731. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.Q.; Ali, R.; Al-Haddad, S.A.R. A Robust Handwritten Numeral Recognition Using Hybrid Orthogonal Polynomials and Moments. Sensors 2021, 21, 1999. [Google Scholar] [CrossRef] [PubMed]
- Barranco-Chamorro, I.; Grentzelos, C. Some uses of orthogonal polynomials in statistical inference. Comput. Math. Methods 2020, e1144. [Google Scholar] [CrossRef]
- Krishnamoorthy, R.; Devi, S.S. Image retrieval using edge based shape similarity with multiresolution enhanced orthogonal polynomials model. Digit. Signal Process. 2013, 23, 555–568. [Google Scholar] [CrossRef]
- Idan, Z.N.; Abdulhussain, S.H.; Mahmmod, B.M.; Al-Utaibi, K.A.; Al-Hadad, S.; Sait, S.M. Fast Shot Boundary Detection Based on Separable Moments and Support Vector Machine. IEEE Access 2021, 9, 106412–106427. [Google Scholar] [CrossRef]
- Nafees, S.; Rice, S.H.; Phillips, C. Analyzing Genomic Data Using Tensor-based Orthogonal Polynomials. In Proceedings of the 2018 ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics, Washington, DC, USA, 29 August–1 September 2018; p. 584. [Google Scholar]
- Igawa, R.A.; Barbon Jr, S.; Paulo, K.C.S.; Kido, G.S.; Guido, R.C.; Júnior, M.L.P.; da Silva, I.N. Account classification in online social networks with LBCA and wavelets. Inf. Sci. 2016, 332, 72–83. [Google Scholar] [CrossRef] [Green Version]
- Hameed, I.M.; Abdulhussain, S.H.; Mahmmod, B.M. Content-based image retrieval: A review of recent trends. Cogent Eng. 2021, 8, 1927469. [Google Scholar] [CrossRef]
- Yang, L.; Su, H.; Zhong, C.; Meng, Z.; Luo, H.; Li, X.; Tang, Y.Y.; Lu, Y. Hyperspectral image classification using wavelet transform-based smooth ordering. Int. J. Wavelets Multiresolut. Inf. Process. 2019, 17, 1950050. [Google Scholar] [CrossRef]
- Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on . In Engineering Mathematics II; Silvestrov, S., Rančić, M., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 337–353. [Google Scholar]
- Jassim, W.A.; Raveendran, P. Face recognition using discrete Tchebichef-Krawtchouk transform. In Proceedings of the 2012 IEEE International Symposium on Multimedia, Irvine, CA, USA, 10–12 December 2012; pp. 120–127. [Google Scholar]
- Mahmmod, B.M.; Abdulhussain, S.H.; Naser, M.A.; Alsabah, M.; Mustafina, J. Speech Enhancement Algorithm Based on a Hybrid Estimator. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1090, p. 012102. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Hussain, A.J.; Mahmmod, B.M.; Jassim, W.A. Orthogonal polynomial embedded image kernel. In Proceedings of the International Conference on Information and Communication Technology, Baghdad, Iraq, 15–16 April 2019; pp. 215–221. [Google Scholar]
- Wang, W.; Zhao, J. Hiding depth information in compressed 2D image/video using reversible watermarking. Multimed. Tools Appl. 2016, 75, 4285–4303. [Google Scholar] [CrossRef]
- Wang, Y.; Vilermo, M.; Yaroslavsky, L. Energy compaction property of the MDCT in comparison with other transforms. In Audio Engineering Society Convention 109; Audio Engineering Society: New York, NY, USA, 2000. [Google Scholar]
- Mahmmod, B.M.; Abdul-Hadi, A.M.; Abdulhussain, S.H.; Hussien, A. On Computational Aspects of Krawtchouk Polynomials for High Orders. J. Imaging 2020, 6, 81. [Google Scholar] [CrossRef]
- Abdul-Hadi, A.M.; Abdulhussain, S.H.; Mahmmod, B.M. On the computational aspects of Charlier polynomials. Cogent Eng. 2020, 7, 1763553. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, M.; Shu, H.; Zhang, H.; Luo, L. General form for obtaining discrete orthogonal moments. LET Image Process. 2010, 4, 335. [Google Scholar] [CrossRef]
- Mukundan, R.; Ong, S.; Lee, P. Image analysis by Tchebichef moments. IEEE Trans. Image Process. 2001, 10, 1357–1364. [Google Scholar] [CrossRef]
- Mizel, A.K.E. Orthogonal functions solving linear functional differential equationsusing chebyshev polynomial. Baghdad Sci. J. 2008, 5, 143–148. [Google Scholar]
- Abdulhussain, S.H.; Mahmmod, B.M. Fast and efficient recursive algorithm of Meixner polynomials. J. Real-Time Image Process. 2021, 1–13. [Google Scholar] [CrossRef]
- Yap, P.T.; Paramesran, R.; Ong, S.H. Image analysis by krawtchouk moments. IEEE Trans. Image Process. 2003, 12, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Yap, P.T.; Paramesran, R. Local watermarks based on Krawtchouk moments. In Proceedings of the 2004 IEEE Region 10 Conference TENCON 2004, Chiang Mai, Thailand, 24 November 2004; pp. 73–76. [Google Scholar] [CrossRef]
- Akhmedova, F.; Liao, S. Face Recognition with Discrete Orthogonal Moments. In Recent Advances in Computer Vision; Springer: Cham, Switzerland, 2019; pp. 189–209. [Google Scholar]
- Tsougenis, E.D.; Papakostas, G.A.; Koulouriotis, D.E. Image watermarking via separable moments. Multimed. Tools Appl. 2015, 74, 3985–4012. [Google Scholar] [CrossRef]
- Zhou, Z.; Li, X.; Tang, C.; Ding, C. Binary LCD codes and self-orthogonal codes from a generic construction. IEEE Trans. Inf. Theory 2018, 65, 16–27. [Google Scholar] [CrossRef]
- Heo, J.; Kiem, Y.H. On characterizing integral zeros of Krawtchouk polynomials by quantum entanglement. Linear Algebra Appl. 2019, 567, 167–179. [Google Scholar] [CrossRef]
- Pierce, J.R. An Introduction to Information Theory: Symbols, Signals and Noise; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- Liao, S.X.; Pawlak, M. On the accuracy of Zernike moments for image analysis. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 1358–1364. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.X.; Pawlak, M. On image analysis by moments. IEEE Trans. Pattern Anal. Mach. Intell. 1996, 18, 254–266. [Google Scholar] [CrossRef]
- Kamgar-Parsi, B.; Kamgar-Parsi, B. Evaluation of quantization error in computer vision. In Physics-Based Vision: Principles and Practice: Radiometry, Volume 1; CRC Press: Boca Raton, FL, USA, 1993; p. 293. [Google Scholar]
- Yap, P.T.; Raveendran, P.; Ong, S.H. Krawtchouk moments as a new set of discrete orthogonal moments for image reconstruction. In Proceedings of the 2002 International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002; pp. 908–912. [Google Scholar] [CrossRef]
- Jassim, W.A.; Raveendran, P.; Mukundan, R. New orthogonal polynomials for speech signal and image processing. LET Signal Process. 2012, 6, 713–723. [Google Scholar] [CrossRef]
- Zhang, G.; Luo, Z.; Fu, B.; Li, B.; Liao, J.; Fan, X.; Xi, Z. A symmetry and bi-recursive algorithm of accurately computing Krawtchouk moments. Pattern Recognit. Lett. 2010, 31, 548–554. [Google Scholar] [CrossRef]
- Abdulhussain, S.H.; Ramli, A.R.; Al-Haddad, S.A.R.; Mahmmod, B.M.; Jassim, W.A. Fast Recursive Computation of Krawtchouk Polynomials. J. Math. Imaging Vis. 2018, 60, 285–303. [Google Scholar] [CrossRef]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables; Dover Publications: Mineola, NY, USA, 1964. [Google Scholar]
- Jain, A.K. Fundamentals of Digital Image Processing; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1989. [Google Scholar]
p | Algorithm | p | Algorithm | ||||||
---|---|---|---|---|---|---|---|---|---|
RAN | RAX | FRK | Proposed | RAN | RAX | FRK | Proposed | ||
0.05 | 248 | 84 | 1236 | 20,480 | 0.55 | 926 | 932 | 2428 | 20,480 |
0.10 | 324 | 132 | 2250 | 20,480 | 0.60 | 808 | 812 | 2880 | 20,480 |
0.15 | 392 | 196 | 2252 | 20,480 | 0.65 | 706 | 708 | 3368 | 20,480 |
0.20 | 462 | 276 | 2980 | 20,480 | 0.70 | 618 | 618 | 3058 | 20,480 |
0.25 | 538 | 436 | 3400 | 20,480 | 0.75 | 538 | 490 | 3400 | 20,480 |
0.30 | 618 | 676 | 3058 | 20,480 | 0.80 | 462 | 318 | 2980 | 20,480 |
0.35 | 710 | 1234 | 3368 | 20,480 | 0.85 | 390 | 202 | 2252 | 20,480 |
0.40 | 814 | 1428 | 2880 | 20,480 | 0.90 | 322 | 140 | 2250 | 20,480 |
0.45 | 936 | 1220 | 2428 | 20,480 | 0.95 | 240 | 88 | 1236 | 20,480 |
Krawtchouk Parameter (p) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
0.05, 0.95 | 0.1, 0.9 | 0.15, 0.85 | 0.2, 0.8 | 0.25, 0.75 | 0.3, 0.7 | 0.35, 0.65 | 0.4, 0.6 | 0.45, 0.55 | 0.5 | ||
Polynomial size (N) | 1024 | 10.03 | 13.31 | 15.56 | 17.24 | 18.52 | 19.51 | 20.24 | 20.75 | 21.05 | 21.16 |
2048 | 9.48 | 12.74 | 14.99 | 16.68 | 17.97 | 18.96 | 19.69 | 20.20 | 20.50 | 20.60 | |
3072 | 9.25 | 12.51 | 14.76 | 16.45 | 17.74 | 18.73 | 19.47 | 19.97 | 20.27 | 20.38 | |
4096 | 9.13 | 12.38 | 14.63 | 16.32 | 17.61 | 18.60 | 19.34 | 19.85 | 20.14 | 20.24 | |
5120 | 9.05 | 12.30 | 14.54 | 16.23 | 17.53 | 18.52 | 19.25 | 19.76 | 20.06 | 20.16 | |
6144 | 8.99 | 12.24 | 14.48 | 16.17 | 17.47 | 18.46 | 19.19 | 19.70 | 20.00 | 20.10 | |
7168 | 8.95 | 12.19 | 14.44 | 16.13 | 17.42 | 18.41 | 19.15 | 19.65 | 19.95 | 20.05 | |
8192 | 8.91 | 12.15 | 14.40 | 16.09 | 17.38 | 18.38 | 19.11 | 19.62 | 19.92 | 20.02 | |
Average | 9.22 | 12.48 | 14.73 | 16.41 | 17.71 | 18.70 | 19.43 | 19.94 | 20.24 | 20.34 |
Krawtchouk Polynomial Parameter (p) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
0.05, 0.95 | 0.1, 0.9 | 0.15, 0.85 | 0.2, 0.8 | 0.25, 0.75 | 0.3, 0.7 | 0.35, 0.65 | 0.4, 0.6 | 0.45, 0.55 | 0.5 | |
Proposed | 9.22 | 12.48 | 14.73 | 16.41 | 17.71 | 18.70 | 19.43 | 19.94 | 20.24 | 20.34 |
FRK | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 | 25.00 |
RAN and RAX | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 | 50.00 |
Improvement over FRK | 63.11 | 50.09 | 41.10 | 34.35 | 29.18 | 25.22 | 22.28 | 20.25 | 19.05 | 18.64 |
Improvement over RAN and RAX | 81.55 | 75.05 | 70.55 | 67.18 | 64.59 | 62.61 | 61.14 | 60.12 | 59.52 | 59.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
AL-Utaibi, K.A.; Abdulhussain, S.H.; Mahmmod, B.M.; Naser, M.A.; Alsabah, M.; Sait, S.M. Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials. Entropy 2021, 23, 1162. https://doi.org/10.3390/e23091162
AL-Utaibi KA, Abdulhussain SH, Mahmmod BM, Naser MA, Alsabah M, Sait SM. Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials. Entropy. 2021; 23(9):1162. https://doi.org/10.3390/e23091162
Chicago/Turabian StyleAL-Utaibi, Khaled A., Sadiq H. Abdulhussain, Basheera M. Mahmmod, Marwah Abdulrazzaq Naser, Muntadher Alsabah, and Sadiq M. Sait. 2021. "Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials" Entropy 23, no. 9: 1162. https://doi.org/10.3390/e23091162
APA StyleAL-Utaibi, K. A., Abdulhussain, S. H., Mahmmod, B. M., Naser, M. A., Alsabah, M., & Sait, S. M. (2021). Reliable Recurrence Algorithm for High-Order Krawtchouk Polynomials. Entropy, 23(9), 1162. https://doi.org/10.3390/e23091162