Doppler Broadening of Neutron Cross-Sections Using Kaniadakis Entropy
Abstract
:1. Introduction
2. Methodology
2.1. Calculating Standard Neutron Cross-Sections with FRENDY
2.2. Calculating Deformed Neutron Cross-Sections with FRENDY
- Method: single-level Breit-Wigner;
- Nuclides: Pu238, Tc99, Gd155 and Gd157;
- Temperatures (K): 1500, 2000 and 2500;
- Maximum number of points (h_max): 10,000;
- Range of energy: 10−2 to 107 eV;
- Deformation in relation to the MB distribution: κ = 0.1.
3. Results and Discussion
Deformed Cross-Sections with FRENDY
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Acknowledgments
Conflicts of Interest
References
- Kaniadakis, G. Non-Linear Kinetics Underlying Generalized Statistics. Phys. A Stat. Mech. Its Appl. 2001, 296, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Trivellato, B. Deformed Exponentials and Applications to Finance. Entropy 2013, 15, 3471–3489. [Google Scholar] [CrossRef] [Green Version]
- Lapenta, G.; Markidis, S.; Marocchino, A.; Kaniadakis, G. Relaxation of Relativistic Plasmas Under the Effect of Wave-Particle Interactions. Astrophys. J. 2007, 666, 949–954. [Google Scholar] [CrossRef]
- Carvalho, J.C.; do Nascimento, J.D.; Silva, R.; Medeiros, J.R. Non-Gaussian statistics and stellar rotational velocities of main-sequence field stars. Astrophys. J. 2009, 696, L48–L51. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; Medeiros, J.R. Power Law Statistics and Stellar Rotational Velocities in the Pleiades. EPL (Europhys. Lett.) 2008, 84, 59001. [Google Scholar] [CrossRef]
- Carvalho, J.C.; Silva, R.; do Nascimento, J.D., Jr.; Soares, B.B.; Medeiros, J.R. Observational Measurement of Open Stellar Clusters: A Test of Kaniadakis and Tsallis Statistics. EPL (Europhys. Lett.) 2010, 91, 69002. [Google Scholar] [CrossRef]
- Topsøe, F. Entropy and Equilibrium via Games of Complexity. Phys. A Stat. Mech. Its Appl. 2004, 340, 11–31. [Google Scholar] [CrossRef] [Green Version]
- Abreu, E.M.C.; Neto, J.A.; Barboza, E.M.; Nunes, R.C. Tsallis and Kaniadakis Statistics from the Viewpoint of Entropic Gravity Formalism. Int. J. Mod. Phys. A 2017, 32, 1750028. [Google Scholar] [CrossRef] [Green Version]
- Abreu, E.M.C.; Neto, J.A.; Mendes, A.C.R.; Bonilla, A.; de Paula, R.M. Cosmological Considerations in Kaniadakis Statistics. EPL (Europhys. Lett.) 2018, 124, 30003. [Google Scholar] [CrossRef]
- Lourek, I.; Tribeche, M. Dust Charging Current in Non Equilibrium Dusty Plasma in the Context of Kaniadakis Generalization. Phys. A Stat. Mech. Its Appl. 2019, 517, 522–529. [Google Scholar] [CrossRef]
- Guedes, G.; Gonçalves, A.C.; Palma, D.A. The Doppler Broadening Function Using the Kaniadakis Distribution. Ann. Nucl. Energy 2017, 110, 453–458. [Google Scholar] [CrossRef]
- Kaniadakis, G. Statistical Mechanics in the Context of Special Relativity. Phys. Rev. E 2002, 66, 56125. [Google Scholar] [CrossRef] [Green Version]
- de Abreu, W.V.; Gonçalves, A.C.; Martinez, A.S. Analytical Solution for the Doppler Broadening Function Using the Kaniadakis Distribution. Ann. Nucl. Energy 2019, 126, 262–268. [Google Scholar] [CrossRef]
- de Abreu, W.V.; Martinez, A.S.; do Carmo, E.D.; Gonçalves, A.C. A Novel Analytical Solution of the Deformed Doppler Broadening Function Using the Kaniadakis Distribution and the Comparison of Computational Efficiencies with the Numerical Solution. Nucl. Eng. Technol. 2022, 54, 1471–1481. [Google Scholar] [CrossRef]
- Mamedov, B.A. Analytical Evaluation of Doppler Functions Arising from Resonance Effects in Nuclear Processes. Nucl. Instrum. Methods Phys. Res. 2009, 608, 336–338. [Google Scholar] [CrossRef]
- Antunes, A.J.M.; Gonçalves, A.C.; Martinez, A.S. Analytical Solution for the Doppler Broadening Function Using the Tsallis Distribution. Prog. Nucl. Energy 2022, 144, 104071. [Google Scholar] [CrossRef]
- Abul-Magd, A.Y. Nonextensive Random-Matrix Theory Based on Kaniadakis Entropy. Phys. Lett. A 2007, 361, 450–454. [Google Scholar] [CrossRef] [Green Version]
- He, K.-R. Jeans Analysis with κ-Deformed Kaniadakis Distribution in f (R) Gravity. Phys. Scr. 2022, 97, 025601. [Google Scholar] [CrossRef]
- Tada, K.; Nagaya, Y.; Kunieda, S.; Suyama, K.; Fukahori, T. Frendy: A New Nuclear Data Processing System Being Developed at JAEA. EPJ Web Conf. 2017, 146, 2028. [Google Scholar] [CrossRef] [Green Version]
- Tada, K.; Nagaya, Y.; Kunieda, S.; Suyama, K.; Fukahori, T. Development and Verification of a New Nuclear Data Processing System FRENDY. J. Nucl. Sci. Technol. 2017, 54, 806–817. [Google Scholar] [CrossRef] [Green Version]
- Macfarlane, R.; Muir, D.W.; Boicourt, R.M.; Kahler, I.A.C.; Conlin, J.L. The NJOY Nuclear Data Processing System, Version 2016; Los Alamos National Laboratory: Los Alamos, NM, USA, 2017.
- Cullen, D.E. PREPRO 2010-2010 ENDF-6 Pre-Processing Codes; International Atomic Energy Agency: Vienna, Austria, 2010. [Google Scholar]
- Zu, T.; Xu, J.; Tang, Y.; Bi, H.; Zhao, F.; Cao, L.; Wu, H. NECP-Atlas: A New Nuclear Data Processing Code. Ann. Nucl. Energy 2019, 123, 153–161. [Google Scholar] [CrossRef]
- Chadwick, M.B.; Herman, M.; Obložinský, P.; Dunn, M.E.; Danon, Y.; Kahler, A.C.; Smith, D.L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; et al. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data. Nucl. Data Sheets 2011, 112, 2887–2996. [Google Scholar] [CrossRef]
- Zhuang, Y.; Liu, T.; Zhang, J.; Liu, P. CENDL-3–Chinese Evaluated Nuclear Data Library, Version 3. J. Nucl. Sci. Technol. 2002, 39, 37–39. [Google Scholar] [CrossRef] [Green Version]
- Nuclear Energy Agency Joint Evaluated Fission and Fusion (JEFF) Nuclear Data Library. Available online: https://www.oecd-nea.org/dbdata/jeff/ (accessed on 5 July 2022).
- Shibata, K.; Iwamoto, O.; Nakagawa, T.; Iwamoto, N.; Ichihara, A.; Kunieda, S.; Chiba, S.; Furutaka, K.; Otuka, N.; Ohsawa, T.; et al. JENDL-4.0: A New Library for Nuclear Science and Engineering. J. Nucl. Sci. Technol. 2011, 48, 1–30. [Google Scholar] [CrossRef]
- de Abreu, W.V. Solução Analítica Da Função de Alargamento Doppler Usando a Distribuição de Kaniadakis; Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil, 2020; p. 130. [Google Scholar] [CrossRef]
- de Abreu, W.V.; Gonçalves, A.C.; Martinez, A.S. New Analytical Formulations for the Doppler Broadening Function and Interference Term Based on Kaniadakis Distributions. Ann. Nucl. Energy 2020, 135, 106960. [Google Scholar] [CrossRef]
- Tada, K.; Kunieda, S.; Nagaya, Y. Nuclear Data Processing Code FRENDY Version 1; Japan Atomic Energy Agency: Tokai, Japan, 2018.
- National Nuclear Data Center. ENDF-6 Formats Manual; Trkov, A., Herman, M., Brown, D.A., Eds.; Brookhaven National Laboratory: Upton, NY, USA, 2018.
- Lehtinen, N.G. Error Functions. 2010. Available online: http://nlpc.stanford.edu/nleht/Science/reference/errorfun.pdf (accessed on 18 September 2022).
- Arfken, G.B.; Weber, H.J.; Harris, F.H. Mathematical Methods for Physicists, 7th ed.; Academic Press: Cambridge, MA, USA; Elesvier: Amsterdam, The Netherlands, 2013; ISBN 978-0-12-384654-9. [Google Scholar]
- Johnson, S.G. Faddeeva Package. Available online: http://ab-initio.mit.edu/wiki/index.php/Faddeeva_Package (accessed on 11 July 2022).
- Gautschi, W. Efficient Computation of the Complex Error Function. SIAM J. Numer. Anal. 1970, 7, 187–198. [Google Scholar] [CrossRef]
- Poppe, G.P.M.; Wijers, C.M.J. More Efficient Computation of the Complex Error Function. ACM Trans. Math. Softw. 1990, 16, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Gusev, V.V.; Pustovalov, A.A.; Rybkin, N.N.; Anatychuk, L.I.; Demchuk, B.N.; Ludchak, I.Y. Milliwatt-Power Radioisotope Thermoelectric Generator (RTG) Based on Plutonium-238. J. Electron. Mater. 2011, 40, 807–811. [Google Scholar] [CrossRef]
- Werner, J.; Lively, K.; Kirkham, D. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) for Mars 2020. In Proceedings of the 2017 IEEE Aerospace Conference, Big Sky, MT, USA, 7 March 2017; IEEE: Piscataway, NJ, USA; pp. 1–6. [Google Scholar]
- Clarke, E.; Giglio, J.; Wahlquist, K.; Dees, C.; Gates, A.; Birch, J.; Davis, S.; Horkley, B.; Rich, L. Multi-Mission Thermoelectric Generator Fueling Testing and Integration Operations for Mars 2020. Nucl. Technol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Antony, M.; Coulon, J.-P.; Gay, S.; Bourrelly, F.; Tarabelli, D.; Drapeau, D.; Chapuis, C.; Derasse, F.; Aymard, N.; Mallet, R. Moly Production in the Jules Horowitz Reactor: Capacity and Status of the Development; IGORR: Sydney, Autralia, 2017. [Google Scholar]
- Collins, E.D.; Morris, R.N.; McDuffee, J.L.; Mulligan, P.L.; Delashmitt, J.S.; Sherman, S.R.; Vedder, R.J.; Wham, R.M. Plutonium-238 Production Program Results, Implications, and Projections from Irradiation and Examination of Initial NpO2 Test Targets for Improved Production. Nucl. Technol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Toupin, S.; Pezel, T.; Bustin, A.; Cochet, H. Whole-Heart High-Resolution Late Gadolinium Enhancement: Techniques and Clinical Applications. J. Magn. Reson. Imaging 2022, 55, 967–987. [Google Scholar] [CrossRef] [PubMed]
- Ozturk, S. Radiation Shielding Properties of Gadolinium-Doped Water. Phys. Scr. 2021, 96, 055402. [Google Scholar] [CrossRef]
- Mani, V.; Prasad, N.S.; Kelkar, A. Ultra High Molecular Weight Polyethylene (UHMWPE) Fiber Epoxy Composite Hybridized with Gadolinium and Boron Nanoparticles for Radiation Shielding; Hughes, G.B., Ed.; SPIE: Bellingham, WA, USA, 2016; p. 99810D. [Google Scholar]
- da Silva, M.V.; Martinez, A.S.; Gonçalves, A.C. Effective Medium Temperature for Calculating the Doppler Broadening Function Using Kaniadakis Distribution. Ann. Nucl. Energy 2021, 161, 108500. [Google Scholar] [CrossRef]
ξ | x = 0 | x = 0.5 | x = 1 | x = 2 | x = 4 | x = 6 | x = 8 | x = 10 | x = 20 | x = 40 |
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.02 | 0.02 | 0.00 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.06 | 0.67 |
0.10 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.05 | 0.06 | 0.09 | 0.73 | 12.55 |
0.15 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.11 | 0.17 | 0.32 | 3.77 | 10.39 |
0.20 | 0.08 | 0.08 | 0.08 | 0.09 | 0.12 | 0.21 | 0.44 | 0.85 | 9.60 | 4.48 |
0.25 | 0.10 | 0.09 | 0.10 | 0.11 | 0.19 | 0.41 | 0.90 | 1.89 | 10.91 | 3.08 |
0.30 | 0.11 | 0.11 | 0.12 | 0.15 | 0.29 | 0.71 | 1.67 | 3.50 | 6.89 | 3.17 |
0.35 | 0.13 | 0.13 | 0.15 | 0.19 | 0.44 | 1.16 | 2.78 | 5.46 | 5.00 | 4.84 |
0.40 | 0.15 | 0.15 | 0.17 | 0.23 | 0.63 | 1.75 | 4.09 | 7.04 | 4.09 | 3.23 |
0.45 | 0.17 | 0.18 | 0.19 | 0.29 | 0.87 | 2.51 | 5.42 | 7.64 | 3.82 | 3.23 |
0.50 | 0.19 | 0.20 | 0.22 | 0.36 | 1.18 | 3.37 | 6.41 | 7.32 | 3.49 | 3.28 |
ξ | x = 0 | x = 0.5 | x = 1 | x = 2 | x = 4 | x = 6 | x = 8 | x = 10 | x = 20 | x = 40 |
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.06 | 0.67 |
0.10 | 0.04 | 0.04 | 0.04 | 0.04 | 0.04 | 0.05 | 0.06 | 0.08 | 0.68 | 10.61 |
0.15 | 0.06 | 0.06 | 0.06 | 0.06 | 0.07 | 0.09 | 0.15 | 0.26 | 3.40 | 8.00 |
0.20 | 0.08 | 0.08 | 0.08 | 0.08 | 0.10 | 0.17 | 0.34 | 0.71 | 8.17 | 3.08 |
0.25 | 0.10 | 0.10 | 0.10 | 0.10 | 0.15 | 0.31 | 0.73 | 1.59 | 8.89 | 2.55 |
0.30 | 0.11 | 0.11 | 0.12 | 0.13 | 0.22 | 0.55 | 1.37 | 2.96 | 5.73 | 2.41 |
0.35 | 0.13 | 0.13 | 0.14 | 0.16 | 0.32 | 0.89 | 2.28 | 4.55 | 3.72 | 2.34 |
0.40 | 0.15 | 0.15 | 0.16 | 0.19 | 0.45 | 1.37 | 3.36 | 5.82 | 2.97 | 2.30 |
0.45 | 0.17 | 0.17 | 0.18 | 0.23 | 0.63 | 1.97 | 4.42 | 6.28 | 2.68 | 2.28 |
0.50 | 0.19 | 0.19 | 0.20 | 0.27 | 0.85 | 2.63 | 5.18 | 5.92 | 2.54 | 2.26 |
ξ | x = 0 | x = 0.5 | x = 1 | x = 2 | x = 4 | x = 6 | x = 8 | x = 10 | x = 20 | x = 40 |
---|---|---|---|---|---|---|---|---|---|---|
0.05 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 |
0.10 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.01 | 0.00 | 0.01 | 0.05 | 1.94 |
0.15 | 0.00 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.03 | 0.06 | 0.38 | 2.39 |
0.20 | 0.00 | 0.00 | 0.00 | 0.01 | 0.02 | 0.04 | 0.09 | 0.14 | 1.44 | 1.40 |
0.25 | 0.00 | 0.00 | 0.00 | 0.01 | 0.04 | 0.09 | 0.17 | 0.30 | 2.01 | 0.53 |
0.30 | 0.00 | 0.00 | 0.00 | 0.02 | 0.07 | 0.16 | 0.30 | 0.54 | 1.16 | 0.77 |
0.35 | 0.00 | 0.00 | 0.01 | 0.03 | 0.12 | 0.26 | 0.50 | 0.90 | 1.28 | 2.50 |
0.40 | 0.00 | 0.00 | 0.01 | 0.04 | 0.18 | 0.38 | 0.73 | 1.21 | 1.12 | 0.92 |
0.45 | 0.00 | 0.01 | 0.02 | 0.06 | 0.24 | 0.55 | 1.01 | 1.37 | 1.14 | 0.95 |
0.50 | 0.00 | 0.01 | 0.02 | 0.09 | 0.33 | 0.73 | 1.23 | 1.40 | 0.95 | 1.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Abreu, W.V.; Maciel, J.M.; Martinez, A.S.; Gonçalves, A.d.C.; Schmidt, L. Doppler Broadening of Neutron Cross-Sections Using Kaniadakis Entropy. Entropy 2022, 24, 1437. https://doi.org/10.3390/e24101437
de Abreu WV, Maciel JM, Martinez AS, Gonçalves AdC, Schmidt L. Doppler Broadening of Neutron Cross-Sections Using Kaniadakis Entropy. Entropy. 2022; 24(10):1437. https://doi.org/10.3390/e24101437
Chicago/Turabian Stylede Abreu, Willian Vieira, João Márcio Maciel, Aquilino Senra Martinez, Alessandro da Cruz Gonçalves, and Lucas Schmidt. 2022. "Doppler Broadening of Neutron Cross-Sections Using Kaniadakis Entropy" Entropy 24, no. 10: 1437. https://doi.org/10.3390/e24101437