Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin
Abstract
:1. Introduction
2. Related Work
2.1. Self-Organizing Mapping
2.2. Catboost
2.3. BiLSTM
3. Prediction of Bearing RUL Based on Digital Twin
3.1. ISOFM
3.2. MMA-BiLSTM
4. Experimental Validation
4.1. Experimental Description
4.2. Comparison of Digital Twin Data with Initial Data
4.3. MMA-BiLSTM
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Li, X.; Ma, H. Deep representation clustering-based fault diagnosis method with unsupervised data applied to rotating machinery. Mech. Syst. Signal. Process. 2020, 143, 106825. [Google Scholar] [CrossRef]
- Yu, K.; Lin, T.R.; Ma, H.; Li, X.; Li, X. A multi-stage semi-supervised learning approach for intelligent fault diagnosis of rolling bearing using data augmentation and metric learning. Mech. Syst. Signal. Process. 2021, 146, 107043. [Google Scholar] [CrossRef]
- Wang, Z.J.; He, X.X.; Yang, B.; Li, N.P. Subdomain Adaptation Transfer Learning Network for Fault Diagnosis of Roller Bearings. IEEE Trans. Ind. Electron. 2022, 69, 8430–8439. [Google Scholar] [CrossRef]
- Wang, Z.J.; Zhou, J.; Du, W.H.; Lei, Y.G.; Wang, J.Y. Bearing fault diagnosis method based on adaptive maximum cyclostationarity blind deconvolution. Mech. Syst. Sig. Process. 2022, 162, 108018. [Google Scholar] [CrossRef]
- He, X.X.; Wang, Z.J.; Li, Y.F.; Khazhina, S.; Du, W.H.; Wang, J.Y.; Wang, W.Z. Joint decision-making of parallel machine scheduling restricted in job-machine release time and preventive maintenance with remaining useful life constraints. Reliab. Eng. Syst. Saf. 2022, 222, 108429. [Google Scholar] [CrossRef]
- Xu, L.; Pennacchi, P.; Chatterton, S. A new method for the estimation of bearing health state and remaining useful life based on the moving average cross-correlation of power spectral density. Mech. Syst. Signal. Process. 2020, 139, 106617. [Google Scholar] [CrossRef] [Green Version]
- Rezamand, M.; Kordestani, M.; Orchard, M.E.; Carriveau, R.; Ting, D.S.K.; Saif, M. Improved Remaining Useful Life Estimation of Wind Turbine Drivetrain Bearings Under Varying Operating Conditions. IEEE Trans. Ind. Inf. 2021, 17, 1742–1752. [Google Scholar] [CrossRef]
- Qin, Y.; Chen, D.; Xiang, S.; Zhu, C. Gated Dual Attention Unit Neural Networks for Remaining Useful Life Prediction of Rolling Bearings. IEEE Trans. Ind. Inf. 2021, 17, 6438–6447. [Google Scholar] [CrossRef]
- Wang, H.; Ni, G.; Chen, J.; Qu, J. Research on rolling bearing state health monitoring and life prediction based on PCA and Internet of things with multi-sensor. Measurement 2020, 157, 107657. [Google Scholar] [CrossRef]
- Chen, C.; Li, B.; Guo, J.; Liu, Z.; Qi, B.; Hua, C. Bearing life prediction method based on the improved FIDES reliability model. Reliab. Eng. Syst. Saf. 2022, 227, 108746. [Google Scholar] [CrossRef]
- Jiang, G.; Zhou, W.; Chen, Q.; He, Q.; Xie, P. Dual residual attention network for remaining useful life prediction of bearings. Measurement 2022, 199, 111424. [Google Scholar] [CrossRef]
- Ahmad, W.; Khan, S.A.; Kim, J.-M. A Hybrid Prognostics Technique for Rolling Element Bearings Using Adaptive Predictive Models. IEEE Trans. Ind. Electron. 2018, 65, 1577–1584. [Google Scholar] [CrossRef]
- Xu, G.; Hou, D.; Qi, H.; Bo, L. High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life. Mech. Syst. Signal. Pract. 2021, 146, 107050. [Google Scholar] [CrossRef]
- Pan, Z.; Meng, Z.; Chen, Z.; Gao, W.; Shi, Y. A two-stage method based on extreme learning machine for predicting the remaining useful life of rolling-element bearings. Mech. Syst. Signal. Pract. 2020, 144, 106899. [Google Scholar] [CrossRef]
- Moghadam, F.K.; Nejad, A.R. Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mech. Syst. Signal. Pract. 2022, 162, 108087. [Google Scholar] [CrossRef]
- Fahim, M.; Sharma, V.; Cao, T.V.; Canberk, B.; Duong, T.Q. Machine Learning-Based Digital Twin for Predictive Modeling in Wind Turbines. IEEE Access 2022, 10, 14184–14194. [Google Scholar] [CrossRef]
- Xu, X.; Shen, B.; Ding, S.; Srivastava, G.; Bilal, M.; Khosravi, M.R.; Menon, V.G.; Jan, M.A.; Wang, M. Service Offloading With Deep Q-Network for Digital Twinning-Empowered Internet of Vehicles in Edge Computing. IEEE Trans. Ind. Inf. 2022, 18, 1414–1423. [Google Scholar] [CrossRef]
- Tao, F.; Zhang, H.; Liu, A.; Nee, A.Y.C. Digital Twin in Industry: State-of-the-Art. IEEE Trans. Ind. Inf. 2019, 15, 2405–2415. [Google Scholar] [CrossRef]
- Xie, G.; Yang, K.; Xu, C.; Li, R.; Hu, S. Digital Twinning Based Adaptive Development Environment for Automotive Cyber-Physical Systems. IEEE Trans. Ind. Inf. 2022, 18, 1387–1396. [Google Scholar] [CrossRef]
- Wei, Y.; Hu, T.; Wang, Y.; Wei, S.; Luo, W. Implementation strategy of physical entity for manufacturing system digital twin. Robot. Com-Int. Manuf. 2022, 73, 102259. [Google Scholar] [CrossRef]
- Xia, M.; Shao, H.; Williams, D.; Lu, S.; Shu, L.; de Silva, C.W. Intelligent fault diagnosis of machinery using digital twin-assisted deep transfer learning. Reliab. Eng. Syst. Saf. 2021, 215, 107938. [Google Scholar] [CrossRef]
- Liu, K.; Song, L.; Han, W.; Cui, Y.; Wang, Y. Time-Varying Error Prediction and Compensation for Movement Axis of CNC Machine Tool Based on Digital Twin. IEEE Trans. Ind. Inf. 2022, 18, 109–118. [Google Scholar] [CrossRef]
- Rassolkin, A.; Rjabtsikov, V.; Kuts, V.; Vaimann, T.; Kallaste, A.; Asad, B.; Partyshev, A. Interface Development for Digital Twin of an Electric Motor Based on Empirical Performance Model. IEEE Access 2022, 10, 15635–15643. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy Function Approximation_ A Gradient Boosting Machine. Ann. Math. Stat. 2001, 29, 1189–1232. [Google Scholar]
- Qin, Y.; Xiang, S.; Chai, Y.; Chen, H. Macroscopic–Microscopic Attention in LSTM Networks Based on Fusion Features for Gear Remaining Life Prediction. IEEE Trans. Ind. Electron. 2020, 67, 10865–10875. [Google Scholar] [CrossRef]
Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4 | |
---|---|---|---|---|
Load (kg) | 500 | 1000 | 1000 | 1000 |
Speed (rpm) | 1200 | 2100 | 2100 | 2100 |
Time (min) | 154 | 340 | 821 | 1639 |
Data Set | Current Sample Point | Real RUL | Prediction of RUL Errors (%) | |
---|---|---|---|---|
Initial Data | Twin Data | |||
Dataset 1 | 123 | 31 | 16.12 | 9.67 |
Dataset 2 | 272 | 68 | 14.7 | 10.29 |
Dataset 3 | 657 | 164 | 9.14 | 12.19 |
Dataset 4 | 1311 | 328 | 19.8 | 15.2 |
MMA-BiLSTM | BiLSTM | LSTM | GRU | |
---|---|---|---|---|
Dataset 1-1 | 145 | 164 | 158 | 231 |
Dataset 1-2 | 143 | 141 | 137 | 164 |
Dataset 1-3 | 152 | 139 | 156 | 169 |
Dataset 1-4 | 146 | 153 | 122 | 152 |
MAE | 7.50 | 9.75 | 13.75 | 26.0 |
RMSE | 8.21 | 11.12 | 18.25 | 39.55 |
MMA-BiLSTM | BiLSTM | LSTM | GRU | |
---|---|---|---|---|
Dataset 2-1 | 327 | 357 | 364 | 390 |
Dataset 2-2 | 365 | 384 | 332 | 367 |
Dataset 2-3 | 350 | 363 | 359 | 471 |
Dataset 2-4 | 333 | 308 | 326 | 361 |
MAE | 13.75 | 29.0 | 16.25 | 57.25 |
RMSE | 15.35 | 30.73 | 17.29 | 72.16 |
MMA-BiLSTM | BiLSTM | LSTM | GRU | |
---|---|---|---|---|
Dataset 3-1 | 820 | 827 | 780 | 941 |
Dataset 3-2 | 768 | 835 | 773 | 893 |
Dataset 3-3 | 795 | 758 | 826 | 754 |
Dataset 3-4 | 832 | 780 | 841 | 807 |
MAE | 22.75 | 31.0 | 28.50 | 68.25 |
RMSE | 30.03 | 38.75 | 33.21 | 77.89 |
MMA-BiLSTM | BiLSTM | LSTM | GRU | |
---|---|---|---|---|
Dataset 4-1 | 1712 | 1679 | 1726 | 1738 |
Dataset 4-2 | 1691 | 1648 | 1694 | 1704 |
Dataset 4-3 | 1652 | 1712 | 1689 | 1670 |
Dataset 4-4 | 1678 | 1707 | 1746 | 1695 |
MAE | 44.25 | 47.5 | 74.75 | 62.75 |
RMSE | 49.30 | 53.93 | 78.33 | 67.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Zeng, Z.; Li, Y.; Liu, J.; Wang, Z. Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin. Entropy 2022, 24, 1578. https://doi.org/10.3390/e24111578
Zhang R, Zeng Z, Li Y, Liu J, Wang Z. Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin. Entropy. 2022; 24(11):1578. https://doi.org/10.3390/e24111578
Chicago/Turabian StyleZhang, Rui, Zhiqiang Zeng, Yanfeng Li, Jiahao Liu, and Zhijian Wang. 2022. "Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin" Entropy 24, no. 11: 1578. https://doi.org/10.3390/e24111578
APA StyleZhang, R., Zeng, Z., Li, Y., Liu, J., & Wang, Z. (2022). Research on Remaining Useful Life Prediction Method of Rolling Bearing Based on Digital Twin. Entropy, 24(11), 1578. https://doi.org/10.3390/e24111578