Leveraging Deep Learning for IoT Transceiver Identification
Abstract
:1. Introduction
2. Related Works
2.1. Physical-Layer Security
2.2. Radio Frequency Fingerprinting
2.3. LoRa and Chirp Spread Spectrum
2.4. Convolutional Neural Network
2.5. Limitation of Current Radio Identification Approaches
3. System Design
3.1. Identification System in a Nutshell
3.2. LoRa Spectrogram Processing
3.3. Singular Value Decomposition
3.4. CFO Calculation
3.5. CNN Model Design
4. Evaluation Result
4.1. Experimental Setup
4.2. Performance and Discussion
4.2.1. Comparison with State of the Art
4.2.2. Impact of Different Training Configurations
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
IoT | Internet of Things |
CFO | carrier frequency offset |
CNN | convolutional neural network |
SVD | singular value decomposition |
LoRa | long range |
PLS | physical-layer security |
LPWAN | low-power wide-area networks |
References
- Singh, R.P.; Javaid, M.; Haleem, A.; Suman, R. Internet of things (IoT) applications to fight against COVID-19 pandemic. Diabetes Metab. Syndr. Clin. Res. Rev. 2020, 14, 521–524. [Google Scholar] [CrossRef] [PubMed]
- Perera, C.; Liu, C.H.; Jayawardena, S.; Chen, M. A survey on internet of things from industrial market perspective. IEEE Access 2014, 2, 1660–1679. [Google Scholar] [CrossRef]
- Flynn, T.; Grispos, G.; Glisson, W.; Mahoney, W. Knock! Knock! Who Is There? Investigating Data Leakage from a Medical Internet of Things Hijacking Attack. In Proceedings of the 53rd Hawaii International Conference on System Sciences, Maui, HI, USA, 7–10 January 2020. [Google Scholar]
- Kamboj, A.K.; Jindal, P.; Verma, P. Machine learning-based physical layer security: Techniques, open challenges, and applications. Wirel. Netw. 2021, 27, 5351–5383. [Google Scholar] [CrossRef]
- Rasmussen, K.B.; Capkun, S. Implications of radio fingerprinting on the security of sensor networks. In Proceedings of the 2007 Third International Conference on Security and Privacy in Communications Networks and the Workshops-SecureComm 2007, Nice, France, 17–21 September 2007; pp. 331–340. [Google Scholar]
- Wang, X.; Kong, L.; Wu, Z.; Cheng, L.; Xu, C.; Chen, G. SLoRa: Towards secure LoRa communications with fine-grained physical layer features. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Virtual Event, 16–19 November 2020; pp. 258–270. [Google Scholar]
- Danev, B.; Zanetti, D.; Capkun, S. On physical-layer identification of wireless devices. ACM Comput. Surv. (CSUR) 2012, 45, 1–29. [Google Scholar] [CrossRef] [Green Version]
- Centenaro, M.; Vangelista, L.; Zanella, A.; Zorzi, M. Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wirel. Commun. 2016, 23, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Farrell, S.; Toutain, L.; Yegin, A.; Ratilainen, A.; Anaya, J.C.Z.; Ponsard, B.; Crowcroft, J.; Gomez, C.; Heile, B.; Minaburo, A.; et al. Low-Power Wide Area Network (Lpwan) Overview; RFC Editor: Marina del Rey, CA, USA, 2018. [Google Scholar]
- Raza, U.; Kulkarni, P.; Sooriyabandara, M. Low power wide area networks: An overview. IEEE Commun. Surv. Tutor. 2017, 19, 855–873. [Google Scholar] [CrossRef] [Green Version]
- Sinha, R.S.; Wei, Y.; Hwang, S.H. A survey on LPWA technology: LoRa and NB-IoT. ICT Express 2017, 3, 14–21. [Google Scholar] [CrossRef]
- Shakiba-Herfeh, M.; Chorti, A.; Vincent Poor, H. Physical layer security: Authentication, integrity, and confidentiality. In Physical Layer Security; Springer: Cham, Switerland, 2021; pp. 129–150. [Google Scholar]
- Maurer, U.M. Secret key agreement by public discussion from common information. IEEE Trans. Inf. Theory 1993, 39, 733–742. [Google Scholar] [CrossRef] [Green Version]
- Ahlswede, R.; Csiszár, I. Common randomness in information theory and cryptography. Part i: Secret sharing. IEEE Trans. Inf. Theory 1993, 39, 1121–1132. [Google Scholar] [CrossRef]
- Mathur, S.; Trappe, W.; Mandayam, N.; Ye, C.; Reznik, A. Radio-telepathy: Extracting a secret key from an unauthenticated wireless channel. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, Pittsburgh, PA, USA, 5–8 September 2008; pp. 128–139. [Google Scholar]
- Xu, W.; Jha, S.; Hu, W. Lora-key: Secure key generation system for lora-based network. IEEE Internet Things J. 2018, 6, 6404–6416. [Google Scholar] [CrossRef]
- Gao, J.; Xu, W.; Kanhere, S.; Jha, S.; Kim, J.Y.; Huang, W.; Hu, W. A Novel Model-Based Security Scheme for LoRa Key Generation. In Proceedings of the 20th International Conference on Information Processing in Sensor Networks (Co-Located with CPS-IoT Week 2021), IPSN’21; Association for Computing Machinery: New York, NY, USA, 2021; pp. 47–61. [Google Scholar]
- Langley, L.E. Specific emitter identification (SEI) and classical parameter fusion technology. In Proceedings of the WESCON’93, San Francisco, CA, USA, 28–30 September 1993; pp. 377–381. [Google Scholar]
- Serinken, N.; Ellis, K.; Lavigne, E. An Evaluation of the Motron Txid-1 Transmitter Fingerprinting System; Citeseer: Ottawa, ON, Canada, 1997. [Google Scholar]
- Riezenman, M.J. Cellular security: Better, but foes still lurk. IEEE Spectrum 2000, 37, 39–42. [Google Scholar] [CrossRef]
- Chandrasekaran, G.; Francisco, J.A.; Ganapathy, V.; Gruteser, M.; Trappe, W. Detecting identity spoofs in IEEE 802.11 e wireless networks. In Proceedings of the GLOBECOM 2009—2009 IEEE Global Telecommunications Conference, Honolulu, HI, USA, 30 November–4 December 2009; pp. 1–6. [Google Scholar]
- Liu, Y.; Ning, P. Enhanced wireless channel authentication using time-synched link signature. In Proceedings of the 2012 Proceedings IEEE INFOCOM; IEEE: Piscataway, NJ, USA, 2012; pp. 2636–2640. [Google Scholar]
- Liu, Y.; Ning, P.; Dai, H. Authenticating primary users’ signals in cognitive radio networks via integrated cryptographic and wireless link signatures. In Proceedings of the 2010 IEEE Symposium on Security and Privacy, Berleley, CA, USA, 16–19 May 2010; pp. 286–301. [Google Scholar]
- Zhang, J.; Firooz, M.H.; Patwari, N.; Kasera, S.K. Advancing wireless link signatures for location distinction. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, Pittsburgh, PA, USA, 5–8 September 2008; pp. 26–37. [Google Scholar]
- Periaswamy, S.C.G.; Thompson, D.R.; Romero, H.P.; Di, J. Fingerprinting radio frequency identification tags using timing characteristics. In Proceedings of the Proc. Workshop on RFID Security-RFID-Sec Asia; Citeseer: Singapore, 2010. [Google Scholar]
- Kasera, S.J.S.K. On Fast and Accurate Detection of Unauthorized Wireless Access Points using Clock Skews. In Proceedings of the International Conference on Mobile Computing and Networking, Avignon, France, 12–14 October 2008. [Google Scholar]
- Danev, B.; Capkun, S. Transient-based identification of wireless sensor nodes. In Proceedings of the 2009 International Conference on Information Processing in Sensor Networks, San Francisco, CA, USA, 13–16 April 2009; pp. 25–36. [Google Scholar]
- Brik, V.; Banerjee, S.; Gruteser, M.; Oh, S. Wireless device identification with radiometric signatures. In Proceedings of the 14th ACM International Conference on Mobile Computing and Networking, San Francisco, CA, USA, 14–19 September 2008; pp. 116–127. [Google Scholar]
- Robyns, P.; Marin, E.; Lamotte, W.; Quax, P.; Singelée, D.; Preneel, B. Physical-layer fingerprinting of LoRa devices using supervised and zero-shot learning. In Proceedings of the 10th ACM Conference on Security and Privacy in Wireless and Mobile Networks, Boston, MA, USA, 18–20 July 2017; pp. 58–63. [Google Scholar]
- Shen, G.; Zhang, J.; Marshall, A.; Peng, L.; Wang, X. Radio frequency fingerprint identification for LoRa using deep learning. IEEE J. Sel. Areas Commun. 2021, 39, 2604–2616. [Google Scholar] [CrossRef]
- Ouali, C.; Dumouchel, P.; Gupta, V. A spectrogram-based audio fingerprinting system for content-based copy detection. Multimed. Tools Appl. 2016, 75, 9145–9165. [Google Scholar] [CrossRef]
- Seller, O.B.; Sornin, N. Low Power Long Range Transmitter. U.S. Patent 9,252,834, 2 February 2016. [Google Scholar]
- Knight, M. Decoding LoRa: Realizing a Modern LPWAN with SDR. In Proceedings of the 6th GNU Radio Conference, Boulder, CO, USA, 12–16 September 2016; Volume 1. [Google Scholar]
- Robyns, P.; Quax, P.; Lamotte, W.; Thenaers, W. A multi-channel software decoder for the LoRa modulation scheme. In Proceedings of the IoTBDS, Funchal, Portugal, 19–21 March 2018. [Google Scholar]
- Ghanaatian, R.; Afisiadis, O.; Cotting, M.; Burg, A. LoRa digital receiver analysis and implementation. In Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 12–17 May 2019; pp. 1498–1502. [Google Scholar]
- Seller, O.B.A.; Sornin, N. Low Complexity, Low Power and Long Range Radio Receiver. U.S. Patent 15/620,364, 28 April 2019. [Google Scholar]
- Vangelista, L.; Zanella, A.; Zorzi, M. Long-range IoT technologies: The dawn of LoRaTM. In Proceedings of the Lecture Notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST; Springer: Cham, Switzerland, 2015; Volume 159, pp. 51–58. [Google Scholar]
- Adelantado, F.; Vilajosana, X.; Tuset-Peiro, P.; Martinez, B.; Melia-Segui, J.; Watteyne, T. Understanding the Limits of LoRaWAN. IEEE Commun. Mag. 2017, 55, 34–40. [Google Scholar] [CrossRef] [Green Version]
- Saari, M.; bin Baharudin, A.M.; Sillberg, P.; Hyrynsalmi, S.; Yan, W. LoRa—A survey of recent research trends. In Proceedings of the 2018 41st International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO); IEEE: Opatija, Croatia, 2018; pp. 0872–0877. [Google Scholar]
- Seller, O. LoRaWAN Link Layer. J. ICT Stand. 2021, 9, 1–12. [Google Scholar] [CrossRef]
- Vangelista, L.; Zanella, A.; Zorzi, M. Long-Range IoT Technologies: The Dawn of LoRa™. In Proceedings of the International Conference on Future Access Enablers for Ubiquitous and Intelligent Infrastructures, Ohrid, Republic of Macedonia, 23 September 2015. [Google Scholar]
- Reynders, B.; Pollin, S. Chirp spread spectrum as a modulation technique for long range communication. In Proceedings of the 2016 Symposium on Communications and Vehicular Technologies (SCVT), Mons, Belgium, 22 November 2016; pp. 1–5. [Google Scholar]
- Bansal, A.; Gadre, A.; Singh, V.; Rowe, A.; Iannucci, B.; Kumar, S. OwLL: Accurate LoRa Localization Using the TV Whitespaces. In Proceedings of the 20th International Conference on Information Processing in Sensor Networks (Co-Located with CPS-IoT Week 2021), IPSN’21; Association for Computing Machinery: New York, NY, USA, 2021; pp. 148–162. [Google Scholar] [CrossRef]
- Dongare, A.; Narayanan, R.; Gadre, A.; Luong, A.; Balanuta, A.; Kumar, S.; Iannucci, B.; Rowe, A. Charm: Exploiting geographical diversity through coherent combining in low-power wide-area networks. In Proceedings of the 2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Porto, Portugal, 11–13 April 2018; pp. 60–71. [Google Scholar]
- Xie, B.; Xiong, J. Combating Interference for Long Range LoRa Sensing. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, SenSys’20; Association for Computing Machinery: New York, NY, USA, 2020; pp. 69–81. [Google Scholar] [CrossRef]
- Guo, X.; Shangguan, L.; He, Y.; Zhang, J.; Jiang, H.; Siddiqi, A.A.; Liu, Y. Aloba: Rethinking ON-OFF Keying Modulation for Ambient LoRa Backscatter. In Proceedings of the 18th Conference on Embedded Networked Sensor Systems, SenSys’20; Association for Computing Machinery: New York, NY, USA, 2020; pp. 192–204. [Google Scholar] [CrossRef]
- Xia, X.; Zheng, Y.; Gu, T. FTrack: Parallel decoding for LoRa transmissions. In Proceedings of the 17th Conference on Embedded Networked Sensor Systems, New York, NY, USA, 10–13 November 2019; pp. 192–204. [Google Scholar]
- Lin, Y.; Dong, W.; Gao, Y.; Gu, T. SateLoc: A Virtual Fingerprinting Approach to Outdoor LoRa Localization using Satellite Images. In Proceedings of the 2020 19th ACM/IEEE International Conference on Information Processing in Sensor Networks (IPSN), Sydney, Australia, 21–24 April 2020; pp. 13–24. [Google Scholar] [CrossRef]
- Minaee, S.; Abdolrashidi, A.; Su, H.; Bennamoun, M.; Zhang, D. Biometrics recognition using deep learning: A survey. arXiv 2019, arXiv:1912.00271. [Google Scholar] [CrossRef]
- Tulshan, A.S.; Dhage, S.N. Survey on virtual assistant: Google assistant, siri, cortana, alexa. In Proceedings of the International Symposium on Signal Processing and Intelligent Recognition Systems; Springer: Cham, Switzerland, 2018; pp. 190–201. [Google Scholar]
- Du, X.; Ang, M.H.; Rus, D. Car detection for autonomous vehicle: LIDAR and vision fusion approach through deep learning framework. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 749–754. [Google Scholar]
- Vo-Huu, T.D.; Vo-Huu, T.D.; Noubir, G. Fingerprinting Wi-Fi devices using software defined radios. In Proceedings of the 9th ACM Conference on Security & Privacy in Wireless and Mobile Networks, Darmstadt, Germany, 18–20 July 2016; pp. 3–14. [Google Scholar]
- Chen, X.; Li, H.; Zhou, C.; Liu, X.; Wu, D.; Dudek, G. Fido: Ubiquitous fine-grained wifi-based localization for unlabelled users via domain adaptation. In Proceedings of the Web Conference 2020, Taipei, Taiwan, 20–24 April 2020; pp. 23–33. [Google Scholar]
- Li, C.; Guo, H.; Tong, S.; Zeng, X.; Cao, Z.; Zhang, M.; Yan, Q.; Xiao, L.; Wang, J.; Liu, Y. NELoRa: Towards ultra-low SNR LoRa communication with neural-enhanced demodulation. In Proceedings of the 19th ACM Conference on Embedded Networked Sensor Systems, Coimbra, Portugal, 15–17 November 2021; pp. 56–68. [Google Scholar]
- Al-Shawabka, A.; Pietraski, P.; Pattar, S.B.; Restuccia, F.; Melodia, T. DeepLoRa: Fingerprinting LoRa Devices at Scale Through Deep Learning and Data Augmentation. In Proceedings of the Twenty-Second International Symposium on Theory, Algorithmic Foundations, and Protocol Design for Mobile Networks and Mobile Computing, MobiHoc’21; Association for Computing Machinery: New York, NY, USA, 2021; pp. 251–260. [Google Scholar] [CrossRef]
- Nakamura, T.; Bouazizi, M.; Yamamoto, K.; Ohtsuki, T. Wi-fi-CSI-based fall detection by spectrogram analysis with CNN. In Proceedings of the GLOBECOM 2020-2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; pp. 1–6. [Google Scholar]
- Peng, Y.; Shangguan, L.; Hu, Y.; Qian, Y.; Lin, X.; Chen, X.; Fang, D.; Jamieson, K. PLoRa: A passive long-range data network from ambient LoRa transmissions. In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary, 20–25 August 2018; pp. 147–160. [Google Scholar]
- Xu, W.; Kim, J.Y.; Huang, W.; Kanhere, S.S.; Jha, S.K.; Hu, W. Measurement, Characterization, and Modeling of LoRa Technology in Multifloor Buildings. IEEE Internet Things J. 2019, 7, 298–310. [Google Scholar] [CrossRef] [Green Version]
Training Set | Configuration |
---|---|
I | A, B on Day 1 |
II | A, B on Day 2 |
III | A, B, C, D on Day 1 |
IV | A, B, C, D on Day 2 |
V | A, B on Day 1 and 2 |
VI | A, B, C, D on Day 1 and 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, J.; Fan, H.; Zhao, Y.; Shi, Y. Leveraging Deep Learning for IoT Transceiver Identification. Entropy 2023, 25, 1191. https://doi.org/10.3390/e25081191
Gao J, Fan H, Zhao Y, Shi Y. Leveraging Deep Learning for IoT Transceiver Identification. Entropy. 2023; 25(8):1191. https://doi.org/10.3390/e25081191
Chicago/Turabian StyleGao, Jiayao, Hongfei Fan, Yumei Zhao, and Yang Shi. 2023. "Leveraging Deep Learning for IoT Transceiver Identification" Entropy 25, no. 8: 1191. https://doi.org/10.3390/e25081191