ALS-Based, Automated, Single-Tree 3D Reconstruction and Parameter Extraction Modeling
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. ALS Data
2.2.1. ALS Data Acquisition Program
2.2.2. ALS Data Preprocessing
2.3. Field Measurements in the Field
- Tree height (TH) is the distance from the rootstock of the tree at ground level to the highest point of the canopy, usually measured by triangulation using a Blume–Leiss altimeter (Nanjing Xiangruide Electrical Technology Co., Ltd., Nanjing, China). When an altimeter is used to measure the height of an unknown point, the sight hole forms a straight line with the apex of the tree. The angle between the straight line and the horizontal line is θ. The horizontal distance from the person to the tree L and the height of the person h are known, and the height of the tree can be obtained from the tangent function as H = L × tanθ + h.
- Crown base height (CBH) refers to the height of the tree ground at the rootstock to the bottom of the crown. The measurement method refers to the triangulation method of tree height in which the Blume–Leiss altimeter sighting hole is aimed at the bottom of the crown.
- Diameter at breast height (DBH) refers to the cross-sectional diameter of the tree trunk at breast height. This value can be obtained by measuring the circumference of the trunk at breast height with a tape measure (C), then DBH = C/π.
- Crown width (CW) usually refers to the average value of the crown width in the north–south direction and the width in the east–west direction. Given that the horizontal projection distance in the north–south direction is NS, and the horizontal projection distance in the east–west direction is EW, the crown width CW = (EW + NS)/2.
2.4. AdTree-Based 3D Model Reconstruction of Trees
2.5. Model Refinement and Stand Factor Extraction
- For tree height (TH) and crown base height (CBH), the maximum and minimum distances from the ground of all crown points on the z-axis of the three-dimensional Cartesian coordinate system were calculated by using connectivity analysis of the detection results;
- For the value extraction of the diameter at breast height (DBH) feature, a 3D cylinder was fitted to the torso points at the diameter at breast height using the Levenberg–Marquardt-based cylinder fitting algorithm proposed for AdTree;
- For crown width (CW), a top-down projection was used for the crown points, and the maximum diameter of the crown was retrieved stepwise as the crown diameter using the Welzl algorithm [49];
- For trunk inclination, the angle between the z-axis and the axis of the fitted cylinder was calculated, which is the tree trunk inclination;
- For crown volume (CV) characterization, in the methodology of this study, the crown was reconstructed as a watertight enclosing mesh using the crown-point and alpha-shape algorithms, and the estimation of the crown volume was controlled by adjusting the value of the parameter alpha.
2.5.1. Crown Segmentation Method Based on MST Skeleton Map
2.5.2. Calculating TH and CBH Based on Spatial Connectivity
2.5.3. DBH Based on LM Cylindrical Fitting Algorithm
- Input data: position p of the input point.
- Parameters to be solved: axial vector a of the cylinder, position pa of the end point on the axis, and radius r of the cylinder.
- Objective function: the sum of the squares of the distances d from the point to the face of the branching column, with the following formula:
2.5.4. Trunk Lean Angle
2.5.5. Crown Width (CW) Based on Welzl Algorithm
2.5.6. Alpha-Shape-Based Canopy Volume (CV)
- Constructing the Delaunay triangles: the given point cloud data are first subjected to Delaunay triangulation to generate a set of non-overlapping triangular meshes (TINs) covering all data points.
- Calculating alpha complexes: A crucial part of the alpha-shape algorithm is determining which triangle meshes (TINs) should be included in the alpha complexes. The implementation of this step usually depends on the value of the parameter alpha, which is used to filter the TINs and combine the eligible TINs into alpha complexes. In general, this process is based on the judgment of the radius of the outer circle; if the radius of the outer sphere is less than or equal to alpha, then the corresponding triangles are combined into a set and are known as alpha complexes.
- Extracting the alpha shape: Edges and vertices are extracted from the alpha complexes, and triangles that are not contained inside any of the external circles are eliminated to form the final alpha shape, which represents the topology of the point cloud data.
- By adjusting the value of the parameter alpha, geometric reconstruction results with different accuracies and shapes can be obtained. The canopy volume (CV) can be directly estimated based on the final approximated canopy shape.
3. Results
3.1. Tree Height and Crown Base Height Results
3.2. Diameter at Breast Height Results
3.3. Results of Crown Width
3.4. Crown Volume Results
4. Discussion
4.1. Exploration of Comparisons between Different Models
4.2. Possible Reasons for the Underestimation of TH and CBH
4.3. Impact of Point Cloud Quality on Parameter Estimation Results
4.4. Limitations of Large-Scale Industry in Terms of Productivity
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Newnham, G.J.; Armston, J.D.; Calders, K.; Disney, M.I.; Lovell, J.L.; Schaaf, C.B.; Strahler, A.H.; Danson, F.M. Terrestrial Laser Scanning for Plot-Scale Forest Measurement. Curr. For. Rep 2015, 1, 239–251. [Google Scholar] [CrossRef]
- Zhou, R.; Sun, H.; Ma, K.; Tang, J.; Chen, S.; Fu, L.; Liu, Q. Improving Estimation of Tree Parameters by Fusing ALS and TLS Point Cloud Data Based on Canopy Gap Shape Feature Points. Drones 2023, 7, 524. [Google Scholar] [CrossRef]
- Zhu, R.; Guo, Z.; Zhang, X. Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching. Remote Sens. 2021, 13, 1633. [Google Scholar] [CrossRef]
- Vinci, A.; Brigante, R.; Traini, C.; Farinelli, D. Geometrical Characterization of Hazelnut Trees in an Intensive Orchard by an Unmanned Aerial Vehicle (UAV) for Precision Agriculture Applications. Remote Sens. 2023, 15, 541. [Google Scholar] [CrossRef]
- Holopainen, M.; Vastaranta, M.; Kankare, V.; Hyyppa, H.; Vaaja, M.; Hyyppa, J.; Liang, X.; Litkey, P.; Yu, X.; Kaartinen, H.; et al. The Use of ALS, TLS and VLS Measurements in Mapping and Monitoring Urban Trees. In Proceedings of the 2011 Joint Urban Remote Sensing Event, Munich, Germany, 11–13 April 2011; IEEE: Munich, Germany, 2011; pp. 29–32. [Google Scholar]
- Itakura, K.; Miyatani, S.; Hosoi, F. Estimating Tree Structural Parameters via Automatic Tree Segmentation from LiDAR Point Cloud Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 555–564. [Google Scholar] [CrossRef]
- Huang, H.; Li, X.; Chen, C. Individual Tree Crown Detection and Delineation From Very-High-Resolution UAV Images Based on Bias Field and Marker-Controlled Watershed Segmentation Algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2253–2262. [Google Scholar] [CrossRef]
- Zhou, R.; Wu, D.; Zhou, R.; Fang, L.; Zheng, X.; Lou, X. Estimation of DBH at Forest Stand Level Based on Multi-Parameters and Generalized Regression Neural Network. Forests 2019, 10, 778. [Google Scholar] [CrossRef]
- Brovkina, O.; Latypov, I.S.; Cienciala, E.; Fabianek, T. Improved Method for Estimating Tree Crown Diameter Using High-Resolution Airborne Data. JARS 2016, 10, 026006. [Google Scholar] [CrossRef]
- Kurdi, F.T.; Lewandowicz, E.; Shan, J.; Gharineiat, Z. Three-Dimensional Modeling and Visualization of Single Tree LiDAR Point Cloud Using Matrixial Form. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2024, 17, 3010–3022. [Google Scholar] [CrossRef]
- Du, S.; Lindenbergh, R.; Ledoux, H.; Stoter, J.; Nan, L. AdTree: Accurate, Detailed, and Automatic Modelling of Laser-Scanned Trees. Remote Sens. 2019, 11, 2074. [Google Scholar] [CrossRef]
- Honda, H. Description of the Form of Trees by the Parameters of the Tree-like Body: Effects of the Branching Angle and the Branch Length on the Shape of the Tree-like Body. J. Theor. Biol. 1971, 31, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Okabe, M.; Owada, S.; Igarashi, T. Interactive Design of Botanical Trees Using Freehand Sketches and Example-Based Editing. In Proceedings of the ACM SIGGRAPH 2007 Courses, San Diego, CA, USA, 5–9 August 2007; ACM: San Diego, CA, USA, 2007; p. 26. [Google Scholar]
- Li, B.; Kałużny, J.; Klein, J.; Michels, D.L.; Pałubicki, W.; Benes, B.; Pirk, S. Learning to Reconstruct Botanical Trees from Single Images. ACM Trans. Graph. 2021, 40, 1–15. [Google Scholar] [CrossRef]
- Livny, Y.; Yan, F.; Olson, M.; Chen, B.; Zhang, H.; El-Sana, J. Automatic Reconstruction of Tree Skeletal Structures from Point Clouds. ACM Trans. Graph. 2010, 29, 151. [Google Scholar] [CrossRef]
- Wang, W.; Li, Y.; Huang, H.; Hong, L.; Du, S.; Xie, L.; Li, X.; Guo, R.; Tang, S. Branching the Limits: Robust 3D Tree Reconstruction from Incomplete Laser Point Clouds. Int. J. Appl. Earth Obs. Geoinf. 2023, 125, 103557. [Google Scholar] [CrossRef]
- Liang, X.; Kukko, A.; Kaartinen, H.; Hyyppä, J.; Yu, X.; Jaakkola, A.; Wang, Y. Possibilities of a Personal Laser Scanning System for Forest Mapping and Ecosystem Services. Sensors 2014, 14, 1228–1248. [Google Scholar] [CrossRef]
- González-Jorge, H.; Rodríguez-Gonzálvez, P.; Shen, Y.; Lagüela, S.; Díaz-Vilariño, L.; Lindenbergh, R.; González-Aguilera, D.; Arias, P. Metrological Intercomparison of Six Terrestrial Laser Scanning Systems. IET Sci. Meas. Technol. 2018, 12, 218–222. [Google Scholar] [CrossRef]
- Kuželka, K.; Slavík, M.; Surový, P. Very High Density Point Clouds from UAV Laser Scanning for Automatic Tree Stem Detection and Direct Diameter Measurement. Remote Sens. 2020, 12, 1236. [Google Scholar] [CrossRef]
- Seidel, D.; Ehbrecht, M.; Annighöfer, P.; Ammer, C. From Tree to Stand-Level Structural Complexity—Which Properties Make a Forest Stand Complex? Agric. For. Meteorol. 2019, 278, 107699. [Google Scholar] [CrossRef]
- Qi, W.; Dubayah, R.O. Combining Tandem-X InSAR and Simulated GEDI Lidar Observations for Forest Structure Mapping. Remote Sens. Environ. 2016, 187, 253–266. [Google Scholar] [CrossRef]
- Estornell, J.; Hadas, E.; Martí, J.; López-Cortés, I. Tree Extraction and Estimation of Walnut Structure Parameters Using Airborne LiDAR Data. Int. J. Appl. Earth Obs. Geoinf. 2021, 96, 102273. [Google Scholar] [CrossRef]
- Holopainen, M.; Kankare, V.; Vastaranta, M.; Liang, X.; Lin, Y.; Vaaja, M.; Yu, X.; Hyyppä, J.; Hyyppä, H.; Kaartinen, H.; et al. Tree Mapping Using Airborne, Terrestrial and Mobile Laser Scanning—A Case Study in a Heterogeneous Urban Forest. Urban For. Urban Green. 2013, 12, 546–553. [Google Scholar] [CrossRef]
- Sun, P.; Yuan, X.; Li, D. Classification of Individual Tree Species Using UAV LiDAR Based on Transformer. Forests 2023, 14, 484. [Google Scholar] [CrossRef]
- Raumonen, P.; Kaasalainen, M.; Åkerblom, M.; Kaasalainen, S.; Kaartinen, H.; Vastaranta, M.; Holopainen, M.; Disney, M.; Lewis, P. Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data. Remote Sens. 2013, 5, 491–520. [Google Scholar] [CrossRef]
- Fan, G.; Nan, L.; Dong, Y.; Su, X.; Chen, F. AdQSM: A New Method for Estimating Above-Ground Biomass from TLS Point Clouds. Remote Sens. 2020, 12, 3089. [Google Scholar] [CrossRef]
- Calders, K.; Newnham, G.; Burt, A.; Murphy, S.; Raumonen, P.; Herold, M.; Culvenor, D.; Avitabile, V.; Disney, M.; Armston, J.; et al. Nondestructive Estimates of Above-Ground Biomass Using Terrestrial Laser Scanning. Methods Ecol. Evol. 2015, 6, 198–208. [Google Scholar] [CrossRef]
- Trochta, J.; Krůček, M.; Vrška, T.; Král, K. 3D Forest: An Application for Descriptions of Three-Dimensional Forest Structures Using Terrestrial LiDAR. PLoS ONE 2017, 12, e0176871. [Google Scholar] [CrossRef]
- Zhou, S.; Kang, F.; Li, W.; Kan, J.; Zheng, Y.; He, G. Extracting Diameter at Breast Height with a Handheld Mobile LiDAR System in an Outdoor Environment. Sensors 2019, 19, 3212. [Google Scholar] [CrossRef]
- Olofsson, K.; Holmgren, J.; Olsson, H. Tree Stem and Height Measurements Using Terrestrial Laser Scanning and the RANSAC Algorithm. Remote Sens. 2014, 6, 4323–4344. [Google Scholar] [CrossRef]
- Yang, B.; Dai, W.; Dong, Z.; Liu, Y. Automatic Forest Mapping at Individual Tree Levels from Terrestrial Laser Scanning Point Clouds with a Hierarchical Minimum Cut Method. Remote Sens. 2016, 8, 372. [Google Scholar] [CrossRef]
- Yubo, L.; Hongyu, H.; Liyu, T.; Chongcheng, C.; Hao, Z. Tree Height and Diameter Extraction with 3D Reconstruction in a Forest Based on TLS. Remote Sens. Technol. Appl. 2019, 34, 243–252. [Google Scholar]
- Dai, M.; Li, G. Soft Segmentation and Reconstruction of Tree Crown from Laser Scanning Data. Electronics 2023, 12, 2300. [Google Scholar] [CrossRef]
- Rautiainen, M.; Mõttus, M.; Stenberg, P.; Ervasti, S. Crown Envelope Shape Measurements and Models. Silva Fenn. 2008, 42, 261. [Google Scholar] [CrossRef]
- Franceschi, E.; Moser-Reischl, A.; Rahman, M.A.; Pauleit, S.; Pretzsch, H.; Rötzer, T. Crown Shapes of Urban Trees-Their Dependences on Tree Species, Tree Age and Local Environment, and Effects on Ecosystem Services. Forests 2022, 13, 748. [Google Scholar] [CrossRef]
- Chen, X.; Jiang, K.; Zhu, Y.; Wang, X.; Yun, T. Individual Tree Crown Segmentation Directly from UAV-Borne LiDAR Data Using the PointNet of Deep Learning. Forests 2021, 12, 131. [Google Scholar] [CrossRef]
- Cluzeau, C.; Dupouey, J.; Courbaud, B. Polyhedral Representation of Crown Shape. A Geometric Tool for Growth Modelling. Ann. For. Sci. 1995, 52, 297–306. [Google Scholar] [CrossRef]
- Lin, W.; Meng, Y.; Qiu, Z.; Zhang, S.; Wu, J. Measurement and Calculation of Crown Projection Area and Crown Volume of Individual Trees Based on 3D Laser-Scanned Point-Cloud Data. Int. J. Remote Sens. 2017, 38, 1083–1100. [Google Scholar] [CrossRef]
- Zhu, Z.; Kleinn, C.; Nölke, N. Assessing Tree Crown Volume—A Review. For. Int. J. For. Res. 2021, 94, 18–35. [Google Scholar] [CrossRef]
- Phattaralerphong, J.; Sinoquet, H. A Method for 3D Reconstruction of Tree Crown Volume from Photographs: Assessment with 3D-Digitized Plants. Tree Physiol. 2005, 25, 1229–1242. [Google Scholar] [CrossRef] [PubMed]
- Lecigne, B.; Delagrange, S.; Messier, C. Exploring Trees in Three Dimensions: VoxR, a Novel Voxel-Based R Package Dedicated to Analysing the Complex Arrangement of Tree Crowns. Ann. Bot. 2018, 121, 589–601. [Google Scholar] [CrossRef]
- Zhu, C.; Zhang, X.; Hu, B.; Jaeger, M. Reconstruction of Tree Crown Shape from Scanned Data. In Technologies for E-Learning and Digital Entertainment; Pan, Z., Zhang, X., El Rhalibi, A., Woo, W., Li, Y., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2008; Volume 5093, pp. 745–756. ISBN 978-3-540-69734-3. [Google Scholar]
- Herrero-Huerta, M.; Lindenbergh, R.; Rodríguez-Gonzálvez, P. Automatic Tree Parameter Extraction by a Mobile LiDAR System in an Urban Context. PLoS ONE 2018, 13, e0196004. [Google Scholar] [CrossRef]
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An Easy-to-Use Airborne LiDAR Data Filtering Method Based on Cloth Simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Shendryk, I.; Broich, M.; Tulbure, M.G.; Alexandrov, S.V. Bottom-up Delineation of Individual Trees from Full-Waveform Airborne Laser Scans in a Structurally Complex Eucalypt Forest. Remote Sens. Environ. 2016, 173, 69–83. [Google Scholar] [CrossRef]
- Delagrange, S.; Jauvin, C.; Rochon, P. PypeTree: A Tool for Reconstructing Tree Perennial Tissues from Point Clouds. Sensors 2014, 14, 4271–4289. [Google Scholar] [CrossRef] [PubMed]
- Hackenberg, J.; Spiecker, H.; Calders, K.; Disney, M.; Raumonen, P. SimpleTree—An Efficient Open Source Tool to Build Tree Models from TLS Clouds. Forests 2015, 6, 4245–4294. [Google Scholar] [CrossRef]
- Wu, S.-T.; Marquez, M.R.G. A Non-Self-Intersection Douglas-Peucker Algorithm. In Proceedings of the 16th Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2003), Sao Carlos, Brazil, 12–15 October 2003; IEEE Computer Society: Sao Carlos, Brazil, 2003; pp. 60–66. [Google Scholar]
- Welzl, E. Smallest Enclosing Disks (Balls and Ellipsoids). In New Results and New Trends in Computer Science; Maurer, H., Ed.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1991; Volume 555, pp. 359–370. ISBN 978-3-540-54869-0. [Google Scholar]
- Muja, M.; Lowe, D.G. Scalable Nearest Neighbor Algorithms for High Dimensional Data. IEEE Trans. Pattern Anal. Mach. Intell. 2014, 36, 2227–2240. [Google Scholar] [CrossRef]
- Levenberg, K. A Method for the Solution of Certain Non-Linear Problems in Least Squares. Quart. Appl. Math. 1944, 2, 164–168. [Google Scholar] [CrossRef]
Average Value | Maximum Value | Minimum Value | |
---|---|---|---|
TH (m) | 17.95 | 20.73 | 13.82 |
CBH (m) | 7.02 | 13.89 | 3.35 |
DBH (cm) | 30.8 | 47.1 | 14.4 |
CW (m) | 5.32 | 8.87 | 3.10 |
Model | Evaluation Metrics | TH (M) | CBH (M) | DBH (CM) | CW (M) |
---|---|---|---|---|---|
TreeQSM | Bias | −0.56 | −0.58 | 6.24 | 0.24 |
RMSE | 0.81 | 1.57 | 10.65 | 0.95 | |
R2 | 0.73 | 0.55 | 0.28 | 0.50 | |
rBias | −3.1% | −8.4% | 20.3% | 4.5% | |
rRMSE | 4.5% | 22.7% | 34.6% | 17.9% | |
AdQSM | Bias | −0.30 | 0.35 | 9.39 | 0.60 |
RMSE | 0.62 | 1.51 | 15.44 | 1.04 | |
R2 | 0.78 | 0.64 | 0.09 | 0.60 | |
rBias | −1.7% | 5.1% | 30.5% | 11.3% | |
rRMSE | 3.5% | 21.8% | 50.1% | 19.5% | |
Our study | Bias | −0.32 | −0.21 | 0.49 | 0.03 |
RMSE | 0.55 | 1.02 | 4.10 | 0.61 | |
R2 | 0.85 | 0.88 | 0.63 | 0.74 | |
rBias | −1.8% | −3.0% | 1.6% | 0.6% | |
rRMSE | 3.1% | 14.7% | 13.3% | 11.5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Li, D.; Duan, J.; Sun, P. ALS-Based, Automated, Single-Tree 3D Reconstruction and Parameter Extraction Modeling. Forests 2024, 15, 1776. https://doi.org/10.3390/f15101776
Wang H, Li D, Duan J, Sun P. ALS-Based, Automated, Single-Tree 3D Reconstruction and Parameter Extraction Modeling. Forests. 2024; 15(10):1776. https://doi.org/10.3390/f15101776
Chicago/Turabian StyleWang, Hong, Dan Li, Jiaqi Duan, and Peng Sun. 2024. "ALS-Based, Automated, Single-Tree 3D Reconstruction and Parameter Extraction Modeling" Forests 15, no. 10: 1776. https://doi.org/10.3390/f15101776